Ecological Monitoring Using Wireless Sensor Networks-—Overview, Challenges, and Opportunities

  • Chia-Pang Chen
  • Cheng-Long Chuang
  • Joe-Air Jiang
Part of the Smart Sensors, Measurement and Instrumentation book series (SSMI, volume 1)


Wireless sensor networks (WSNs) offer a powerful feasible integration of distributed sensing capability, real-time data analysis, and remote surveillance due to the combined result of miniaturization of electronic devices and availability of powerful computational capability, larger information storage, and ubiquitous Internet connection. With these advances, WSNs are starting to be translated into a new ecological knowledge. They are providing a new insight into the observation of the world in new ways of extended spatial and temporal scales. Through WSNs, more unexpected phenomena can be obtained, and new paradigms can be developed. Recently, more and more ecological WSNs have been established, and lagre WSNs are deployed to monitor habitats with different scales. The research in the temporal scale ranges from the evaluation of soil moisture dynamics at several minutes to daily precipitation. Spatial measurements, on the other hand, range from the evaluation of global climate change to those related to the monitoring of forest and riparian environments in the range of a few meters. Although we are seeing more use of ecological WSNs, opportunities and challenges begin to be realized, including newly better design of software and hardware, formulation of new questions, discovery of previously unobservable phenomena, and development of new sensors, etc.


Sensor Node Wireless Sensor Network Energy Harvesting Ecological Monitoring Faulty Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Porter, J.H., Nagy, E., Kratz, T.K., Hanson, P., Collins, S.L., Arzberger, P.: New eyes on the world: advanced sensors for ecology. BioScience 59(5), 385–397 (2009)CrossRefGoogle Scholar
  2. 2.
    Ramesh, M.V.: Real-time wireless sensor network for landslide detection. In: Proceedings of Third International Conference on Sensor Technologies and Applications, pp. 405–409 (2009)Google Scholar
  3. 3.
    Jiang, J.-A., Tseng, C.-L., Lu, F.-M., Yang, E.-C., Wu, Z.-S., Chen, C.-P., Lin, S.-H., Lin, K.-C., Liao, C.S.: A GSM-based remote wireless automatic monitoring system for field information: A case study for ecological monitoring of the oriental fruit fly, Bactrocera dorsalis (Hendel). Computers and Electronics in Agriculture 62(2), 243–259 (2008)CrossRefGoogle Scholar
  4. 4.
    Okuyama, T., Yang, E.-C., Chen, C.-P., Lin, T.-S., Chuang, C.-L., Jiang, J.-A.: Using automated monitoring systems to uncover pest population dynamics in agricultural fields. Agricultural Systems 104(9), 666–670 (2011)CrossRefGoogle Scholar
  5. 5.
    Federici, F., Graziosi, F., Faccio, M., Colarieti, A., Gattulli, V., Lepidi, M., Potenza, F.: An integrated approach to the design of wireless sensor networks for structural health monitoring. International Journal of Distributed Sensor Networks, Article ID 594842 (2012)Google Scholar
  6. 6.
    Cybreinfrastructure Vision for 21st Century Discovery, Tech. Rep. Cyberinfrastructure Council, National Science Foundation (March 2007)Google Scholar
  7. 7.
    Porter, J.H., Nagy, E., Kratz, T.K., Hanson, P., Collins, S.L., Arzberger, P.: New eyes on the world: advanced sensors for ecology. BioScience 59(5), 385–397 (2009)CrossRefGoogle Scholar
  8. 8.
    Ho, C.K., Itamura, M.T., Kelley, M., Hughes, R.C.: Review of chemical Sensors for in-situ monitoring of volatile contaminants. Tech. report, Sandia National Laboratories (March 2001)Google Scholar
  9. 9.
    Hierlemann, A., Gutierrez-Osuna, R.: Higher-order chemical sensing. Chemical Reviews 108, 563–613 (2008)CrossRefGoogle Scholar
  10. 10.
    Hart, J.K., Martinez, K.: Environmental sensor networks: A revolution in earth system science? Earth-Science Reviews 78, 177–191 (2006)CrossRefGoogle Scholar
  11. 11.
    Website of National Ecological Observatory Network, (accessed May 15, 2012)
  12. 12.
    Website of CLEANER program, (accessed May 15, 2012)
  13. 13.
    Website of GLEON, (accessed May 15, 2012)
  14. 14.
    Rundel, P., Estrin, D., Kaiser, W.: Innovations in Environmental Monitoring. Sourthern California Environmental Report Card, pp. 31–37 (2006)Google Scholar
  15. 15.
    Website of IEOS, (accessed May 15, 2012)
  16. 16.
    Website of TEO, (accessed May 18, 2012)
  17. 17.
    Collins, S.L., Bettencourt, L.M.A., Hagberg, A., Brown, R.F., Moore, D.I., Bonito, G., Delin, K.A., Jackson, S.P., Johnson, D.W., Burleigh, S.C., Woodrow, R.R., McAuley, J.M.: New opportunities in ecological sensing using wireless sensor networks. Frontiers in Ecology and the Environment 4(8), 402–407 (2006)CrossRefGoogle Scholar
  18. 18.
    Faso, E., Rossi, M., Widmer, J., Zeros, M.: In-network aggregation techniques for wireless sensor networks: a survey. IEEE Wireless Communication Magazine, 70–87 (April 2007)Google Scholar
  19. 19.
    Shaikh, F.K., Khelil, A., Ali, A., Suri, N.: Reliable congestion-aware information transport in wireless sensor networks. International Journal of Communication Networks and Distributed Systems 7(1/2), 135–152 (2011)CrossRefGoogle Scholar
  20. 20.
    Maraiya, K., Kant, K., Gupta, N.: Wireless sensor network: a review on data aggregation. International Journal of Scientific & Engineering Research 2(4), 1–7 (2011)Google Scholar
  21. 21.
    Website of Sensor Web Enablement, (accessed May 16, 2012)
  22. 22.
    Delin, K.A.: The sensor web: a macro-instrument for coordinated sensing. Sensors 2, 70–85 (2002)CrossRefGoogle Scholar
  23. 23.
    Delin, K.A., Jackson, S.P., Johnson, D.W., Burleigh, S.C., Woodrow, R.R., McAuley, J.M., Dohm, J.M., Ip, F., Ferré, T.P.A., Rucker, D.F., Baker, V.R.: Environmental studies with the sensor web: principles and practice. Sensors 5(1-2), 103–117 (2005)CrossRefGoogle Scholar
  24. 24.
    Rundel, P.W., Graham, E.A., Allen, M.F., Fisher, J.C., Harmon, T.C.: Environmental sensor networks in ecological research. New Phytologist 182(3), 589–607 (2009)CrossRefGoogle Scholar
  25. 25.
    Yang, J., Zhang, C., Li, X., Huang, Y., Fu, S., Acevedo, M.F.: Integration of wireless sensor networks in environmental monitoring cyber infrastructure. Wireless Networks 16(4), 1091–1108 (2009)CrossRefGoogle Scholar
  26. 26.
    Handcock, R.N., Swain, D.L., Bishop-Hurley, G.J., Patison, K.P., Wark, T., Valencia, P., Corke, P., O’Neill, C.J.: Monitoring animal behaviour and environmental interactions using wireless sensor networks, GPS collars and satellite remote sensing. Sensors 9(5), 3586–3603 (2009)CrossRefGoogle Scholar
  27. 27.
    Naumowicz, T., Freeman, R., Kirk, H., Dean, B., Calsyn, M., Liers, A., Braendle, A., Guilford, T., Schiller, J.: Wireless sensor network for habitat monitoring on Skomer Island. In: Proceedings of the 5th IEEE International Workshop on Practical Issues in Building Sensor Network Applications, pp. 882–889 (2010)Google Scholar
  28. 28.
    Collins, S.L., Bettencourt, L.M.A., Hagberg, A., Brown, R.F., Moore, D.I., Bonito, G., Delin, K.A., Jackson, S.P., Johnson, D.W., Burleigh, S.C., Woodrow, R.R., McAllen, J.M.: New opportunities in ecological sensing using wireless sensor networks. Frontiers in Ecology and the Environment 4(8), 402–407 (2006)CrossRefGoogle Scholar
  29. 29.
    Bhadauria, D., Isler, V., Studenski, A., Tokekar, P.: A robotic sensor network for monitoring carp in Minnesota lakes. In: Proceedings of the 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 3837–3842 (2010)Google Scholar
  30. 30.
    Seders, L.A., Shea, C.A., Lemmon, M.D., Maurice, P.A., Talley, J.W.: LakeNet: an integrated sensor network for environmental sensing in lakes. Environmental Engineering Science 24, 183–191 (2007)CrossRefGoogle Scholar
  31. 31.
    Caron, D.A., Stauffer, B., Moorthi, S., Singh, A., Battalion, M., Graham, E.A., Hansen, M., Kaiser, W.J., Das, J., Pereira, A.: Macro-to fine-scale spatial and temporal distributions and dynamics of phytoplankton and their environmental driving forces in a small montane lake in southern California, USA. Limnology and Oceanography, pp. 2333–2349 (2008)Google Scholar
  32. 32.
    Sukhatme, G.S., Dhariwal, A., Zhang, B., Oberg, C., Stauffer, B., Caron, D.A.: Design and development of a wireless robotic networked aquatic microbial observing system. Environmental Engineering Science 24, 205–215 (2007)CrossRefGoogle Scholar
  33. 33.
    Roth, T.R., Westhoff, M.C., Howard, H., Huff, J.A., Rubin, J.F., Barrenetxea, G., Vetterli, M., Pariah, A., Sekler, J.S., Parlange, M.B.: Stream temperature response to three riparian vegetation scenarios by use of a distributed temperature validated model. Environmental Science & Technology 44, 2072–2078 (2010)CrossRefGoogle Scholar
  34. 34.
    Chen, C.-P., Chuang, C.-L., Lin, T.-S., Liu, C.-Y., Jiang, J.-A., Yuan, H.-W., Chiou, C.-R., Hong, C.-H.: TernCam: an automated energy-efficient visual surveillance system. International Journal of Computational Science and Engineering (accepted to be published, 2012)Google Scholar
  35. 35.
    Wawerla, J., Marshall, S., Mori, G., Rothley, K., Sabzmeydani, P.: Bearcam: Automated wildlife monitoring at the arctic circle. Journal of Machine Vision Applications 20(5), 303–317 (2009)CrossRefGoogle Scholar
  36. 36.
    Wang, H., Elson, J., Girod, L., Estrin, D., Yao, K.: Target classification and localization in habitat monitoring. In: Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 844–847 (April 2003)Google Scholar
  37. 37.
    Hu, W., Bulusu, N., Chou, C.T., Jha, S., Taylor, A., Tran, V.N.: Design and evaluation of a hybrid sensor network for cane toad monitoring. ACM Transactions on Sensor Networks 5, 1–28 (2009)CrossRefGoogle Scholar
  38. 38.
    Butler, R., Servilla, M., Gage, S., Basney, J., Welch, V., Baker, B., Fleury, T., Duda, P., Gehrig, D., Bletzinger, M.: Cyberinfrastructure for the analysis of ecological acoustic sensor data: a use case study in grid deployment. Cluster Computing 10, 301–310 (2007)CrossRefGoogle Scholar
  39. 39.
    Wang, H., Chen, C.E., Ali, A.M., Asgari, S., Hudson, R.E., Yao, K., Estrin, D., Taylor, C.: Acoustic sensor networks for woodpecker localization. In: Proceedings of SPIE, vol. 5910, pp. 591009-1–591009-12 (2005)Google Scholar
  40. 40.
    Lach, J., Evans, D., McCune, J., Brandon, J.: Power-efficient adaptable wireless sensor networks. In: Proceedings of International Conference on Military and Aerospace Programmable Logic Devices, MAPLD (2003)Google Scholar
  41. 41.
    Brazil, M., Ras, C.J., Thomas, D.A.: Deterministic deployment of wireless sensor networks. In: Proceedings of the 2009 World Congress on Engineering, vol. 1, pp. 863–868 (2009)Google Scholar
  42. 42.
    Bondarenko, O., Kininmonth, S., Kingsford, M.: Underwater Sensor Networks, Oceanography and Plankton Assemblages. In: Proceedings of the International Conference on Intelligent Sensors, Sensor Networks and Information, pp. 657–662 (2007)Google Scholar
  43. 43.
    Howe, B.M., Chao, Y., Arabshahi, P., Roy, S., McGinnis, T., Gray, A.: A Smart Sensor Web for Ocean Observation: Fixed and Mobile Platforms, Integrated Acoustics, Satellites and Predictive Modeling. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 3, 507–521 (2010)CrossRefGoogle Scholar
  44. 44.
    Porter, J., Arzberger, P., Braun, H.-W., Bryant, P., Gage, S., Hansen, T., Hanson, P., Lin, C.-C., Lin, F.-P., Kratz, T., Michener, W., Shapiro, S., Williams, T.: Wireless Sensor Networks for Ecology. BioScience 55(7), 561–572 (2005)CrossRefGoogle Scholar
  45. 45.
    Jiang, X., Huang, L., Zhang, J., Li, Y., Kai, Y.: Application of Data Fusion in Ecological Environment Monitoring System. In: Hou, Z. (ed.) Measuring Technology and Mechatronics Automation in Electrical Engineering. LNEE, vol. 135, pp. 109–117. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  46. 46.
    Yoon, S., Sahib, C.: The Clustered AGgregation (CAG) technique leveraging spatial and temporal correlations in wireless sensor networks. ACM Trans. Sen. Netw. 3(1), Article 3Google Scholar
  47. 47.
    Meng, X., Wang, C.: Application of data fusion technology in greenhouse environment monitoring and control system. Computer and Computing Technologies in Agriculture 3, 293–299 (2011)Google Scholar
  48. 48.
    Gupta, V., Pandey, R.: Data fusion and topology control in wireless sensor networks. WSEAS Transactions on Signal Processing 4(4), 150–172 (2008)Google Scholar
  49. 49.
    Richardson, A.D., Hollinger, D.Y.: A method to estimate the additional uncertainty in gap-filled NEE resulting from long gaps in the CO2 flux record. Agricultural and Forest Meteorology 147, 719–729 (2007)CrossRefGoogle Scholar
  50. 50.
    Xing, Z.S., Bourque, C.P.A., Meng, F.R., Cox, R.M., Swift, D.E., Hza, T.S., Chow, L.: A process-based model designed for filling of large data gaps in tower-based measurements of net ecosystem productivity. Ecological Modeling 213, 165–179 (2008)CrossRefGoogle Scholar
  51. 51.
    Slavo, L., Wood, A., Cao, Q., Sookoor, T., Liu, H., Srinivasan, A., Wu, Y., Kang, W., Stankovic, J., Young, D., Porter, J.: LUSTER: wireless sensor network for environmental research. In: Proceedings of the 5th ACM Conference on Embedded Networked Sensor Systems, SenSys (2007)Google Scholar
  52. 52.
    Khan, M.I., Gansterer, W.N., Haring, G.: In-network storage model for data persistence under congestion in wireless sensor network. In: The First International Conference on Complex, Intelligent and Software Intensive Systems (CISIS), pp. 221–228 (2007)Google Scholar
  53. 53.
    Luo, L., Huang, C., Abdelzaher, T.F., Stankovic, J.: EnviroStore: a cooperative storage system for disconnected operation in sensor networks. In: Proceedings of INFOCOM 2007, pp. 1802–1810 (2007)Google Scholar
  54. 54.
    Roundy, S., Steingart, D., Frechette, L., Wright, P., Rabaey, J.: Power Sources for Wireless Sensor Networks. In: Karl, H., Wolisz, A., Willig, A. (eds.) EWSN 2004. LNCS, vol. 2920, pp. 1–17. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  55. 55.
    Tan, Y.K., Panda, S.K.: Review of energy harvesting technologies for sustainable wireless sensor network. In: Tan, Y.K. (ed.) Sustainable Wireless Sensor Networks, pp. 1–30. InTechGoogle Scholar
  56. 56.
    Wan, Z., Tan, Y., Yuen, C.: Review on energy harvesting and energy management for sustainable wireless sensor networks. In: Proceedings of the IEEE 13th International Conference on Communication Technology (ICCT), pp. 362–367 (2011)Google Scholar
  57. 57.
    Barreto, G.A., Mota, J.C., Souza, L.G., Frota, R.A., Aguaya, L.: Condition monitoring of 3G cellular network through. IEEE Trans. Neural Networks 16(5), 1064–1075 (2006)CrossRefGoogle Scholar
  58. 58.
    Sukkhawatchani, P., Usaha, W.: Performance evaluation of anomaly detection in cellular core networks using self-organizing map. In: Proceedings of ECTI-CON 2008, vol. 1, pp. 361–364 (2008)Google Scholar
  59. 59.
    Paladina, L., Paone, M., Jellamo, G., Puliafito, A.: Self organizing maps for distributed localization in wireless sensor networks. In: Proceedings of the 12th IEEE Symposium on Computers and Communications, pp. 1113–1118 (2007)Google Scholar
  60. 60.
    Siripanadorn, S., Hattagam, W., Teaumroong, N.: Anomaly detection in wireless sensor networks using self-organizing map and wavelets. International Journal of Communications 4(3), 74–83 (2010)Google Scholar
  61. 61.
    Sharma, A.B., Golubchik, L., Govindan, R.: Sensor faults: detection methods and prevalence in real-world datasets. Trans. on Sensor Networks 5, 1–34 (2010)CrossRefGoogle Scholar
  62. 62.
    Luo, X., Dong, M., Huang, Y.: On distributed fault-tolerant detection in wireless sensor networks. IEEE Trans. Comput. 55(1), 58–70Google Scholar
  63. 63.
    Bein, D.: Self-Organizing and Self-Healing Schemes in Wireless Sensor Networks. In: Misra, S., Woungang, I., Misra, S.C. (eds.) Guide to Wireless Sensor Networks, pp. 293–304. Springer (2009)Google Scholar
  64. 64.
    Bokareva, T., Bulusu, N., Jha, S.: SASHA: toward a self-healing hybrid sensor network architecture. In: Proceedings of the 2nd IEEE Workshop on Embedded Networked Sensors (EmNets 2005), pp. 71–78 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Chia-Pang Chen
    • 1
  • Cheng-Long Chuang
    • 1
  • Joe-Air Jiang
    • 1
  1. 1.National Taiwan UniversityTaipeiTaiwan

Personalised recommendations