Methods for Obtaining Polarized Beams

  • Sandibek B. Nurushev
  • Mikhail F. Runtso
  • Mikhail N. Strikhanov
Part of the Lecture Notes in Physics book series (LNP, volume 859)

Abstract

Methods for obtaining high-energy polarized beams are strongly different for different particles. The problem of obtaining polarized proton beams is most complicated. In this case, it is necessary to create high-current sources of hydrogen ions with a high polarization degree and to guide such a beam through a long chain of accelerating units for reaching the final energy. It is particularly difficult to guide beams through strong-focusing accelerators, where a high-accuracy device, so-called “Siberian snake,” should be used to preserve polarization during the acceleration of the protons. This device will be described later. The polarimetry of high-energy proton beams is also difficult. The problem of obtaining polarized electron beams in circular accelerator is somewhat easier. This problem is simplified with the use of ring accelerators/colliders due to the effect of the synchrotron-radiation-induced self-polarization of electrons (so-called Sokolov–Ternov (ST) effect), which will be discussed in the section devoted to polarized electron/positron beams. The problem of obtaining polarized electron beams in linear accelerators is somewhat more complicated. In this case, it is necessary to create high-current sources of polarized electrons. It is particularly easy to obtain polarized muon beams. Muons appear being already polarized in the weak decay of pions. For this reason, many difficulties inherent in the production of polarized proton and even electron (linac) beams are absent in this case. These aspects will be discussed in more details later.

Keywords

Longitudinal Polarization Muon Beam Betatron Oscillation Polarize Electron Beam Polarization Preservation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alguard, M.J., et al.: Phys. Rev. Lett. 37, 1261 (1976) ADSCrossRefGoogle Scholar
  2. Apokin, V.D., et al.: CERN/SPS/77-61 (1977) Google Scholar
  3. Arnold, J., et al.: Nucl. Instrum. Methods Phys. Res. A 386, 211 (1997) ADSCrossRefGoogle Scholar
  4. Baier, V.V., Katkov, V.M., Strakhovenko, V.M.: Zh. Èksp. Teor. Fiz. 31, 908 (1970) Google Scholar
  5. Barber, D.P.: In: Proceedings of the Tenth International Symposium on High Energy Spin Physics, Nagoya, Japan, p. 83 (1992) Google Scholar
  6. Barber, D.P., et al.: Phys. Lett. B 35, 498 (1984) ADSGoogle Scholar
  7. Barber, D.P., et al.: Phys. Lett. B 343, 436 (1995) ADSCrossRefGoogle Scholar
  8. Bargman, V., et al.: Phys. Rev. Lett. 2, 435 (1953) ADSCrossRefGoogle Scholar
  9. Bargmann, V., et al.: Phys. Rev. Lett. 2, 435 (1959) ADSCrossRefGoogle Scholar
  10. Baum, G., et al.: Phys. Rev. Lett. 51, 1135 (1983) ADSCrossRefGoogle Scholar
  11. Bremer, H.D., et al.: DESY report 82-026 (1982) Google Scholar
  12. Bressan, A.: In: Proceedings of the Sixteenth International Spin Physics Symposium, Trieste, Italy, p. 48 (2004) Google Scholar
  13. Chamberlain, O., et al.: Phys. Rev. 93, 1430 (1954) ADSCrossRefGoogle Scholar
  14. Chetvertkov, M.A., Nurushev, S.B.: In: Proceedings of the XIII Advanced Research Workshop on High Energy Spin Physics DSPIN-07, Dubna, p. 185 (2009) Google Scholar
  15. Chetvertkova, V.A., Nurushev, S.B.: In: Proc. of XII Advanced Research Workshop on High Energy Spin Physics DSPIN-07, Dubna, p. 41 (2007) Google Scholar
  16. Chetvertkova, V.A., Nurushev, S.B.: In: Proc. of the XIX International Baldin Seminar on High Energy Physics Problems, Dubna, vol. 2, p. 89 (2008) Google Scholar
  17. Clendenin, J.E., et al.: In: Proceedings of the Fifteenth International Spin Physics Symposium, Upton, New York, USA, p. 1042 (2002) Google Scholar
  18. Courant, E.D., Lee, S.Y., Tepikian, S.: AIP Conf. Proc. 145, 174 (1986) ADSCrossRefGoogle Scholar
  19. Dalpiaz, P., et al.: CERN/ECFA 1, 284 (1972) Google Scholar
  20. Derbenev, Ya.S., Kondratenko, A.M.: Zh. Èksp. Teor. Fiz. 37, 968 (1973) Google Scholar
  21. Derbenev, Ya.S., Kondratenko, A.M.: Dokl. Akad. Nauk SSSR 223, 830 (1975) Google Scholar
  22. Frenkel, J.: Z. Phys. 37, 243 (1926) ADSMATHCrossRefGoogle Scholar
  23. Froissart, M., Store, R.: Nucl. Instrum. Methods 1, 297 (1960) ADSCrossRefGoogle Scholar
  24. Gabathuler, E.: In: Proceedings of the Seventh International Symposium on High Energy Spin Physics, Marselle, France, pp. 2–141 (1984) Google Scholar
  25. Galyaev, N.A., et al.: IHEP Preprint No 92-159 OΠ OMMC, Protvino (1992) Google Scholar
  26. Grosnick, D.P., et al.: Nucl. Instrum. Methods Phys. Res. A 290, 269 (1990) ADSCrossRefGoogle Scholar
  27. HERMES collaboration: A Proposal to Measure Spin Dependent Structure Function at HERA (1990) Google Scholar
  28. Huang, H.: In: Proceedings of the Sixteenth International Spin Physics Symposium, Trieste, Italy, p. 683 (2004) Google Scholar
  29. Khiari, F.Z., et al.: Phys. Rev. D 39, 45 (1989) ADSCrossRefGoogle Scholar
  30. Kumekin, Yu.P., Marish, K.S., Nurushev, S.B., Stoletov, G.D.: JINR Preprint P-278, Dubna (1959) Google Scholar
  31. Mackay, W.: In: Proceedings of the Sixteenth International Spin Physics Symposium, Trieste, Italy, p. 163 (2004) Google Scholar
  32. Mackay, W.W., et al.: Phys. Rev. D 29, 2483 (1984) ADSCrossRefGoogle Scholar
  33. Meshcheriakov, M.G., et al.: Zh. Èksp. Teor. Fiz. 31, 361 (1956) Google Scholar
  34. Meshcheriakov, M.G., et al.: At. Energy 14, 38 (1963) (in Russian) Google Scholar
  35. Nurushev, S.B., et al.: In: Proceedings of the International Symposium on High Energy Physics with Polarized Beams and Targets, Lausanne, Switzerland, p. 501 (1980) Google Scholar
  36. Overseth, O.E.: National Accelerator Laboratory, Summer Study Report SS-120, 1 (1969) Google Scholar
  37. Oxley, C., et al.: Phys. Rev. 93, 806 (1954) ADSCrossRefGoogle Scholar
  38. Potaux, D., et al.: In: Proceedings of the Eighth International Conference on High Energy Accelerators, p. 127. CERN, Geneva (1971) Google Scholar
  39. Shatunov, Yu.M.: Part. Accel. 32, 139 (1990) Google Scholar
  40. Sokolov, A.A., Ternov, I.M.: Dokl. Akad. Nauk SSSR 153, 1053 (1963) Google Scholar
  41. Stoletov, G.D., Nurushev, S.B.: Report of Inst. for Nucl. Problems, Dubna (1954) Google Scholar
  42. Thomas, L.H.: Philos. Mag. 3, 1 (1927) MATHGoogle Scholar
  43. Woods, M.: In: Proceedings of the Eleventh International Symposium on High Energy Spin Physics, Bloomington, USA, p. 230 (1994) Google Scholar

Copyright information

© Moskovski Inzhenerno-Fisitscheski Institute, Moscow, Russia 2013

Authors and Affiliations

  • Sandibek B. Nurushev
    • 1
  • Mikhail F. Runtso
    • 2
  • Mikhail N. Strikhanov
    • 3
  1. 1.Experimental Physics DepartmentInstitute for High-Energy PhysicsProtvinoRussia
  2. 2.Exp. Methods of Nuclear PhysicsNat. Research Nuclear Univ. “MEPhI”MoscowRussia
  3. 3.Nat. Research Nuclear Univ. “MEPhI”MoscowRussia

Personalised recommendations