Skip to main content

Control and Stabilization of Waves on 1-d Networks

  • Chapter
  • First Online:
Modelling and Optimisation of Flows on Networks

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2062))

Abstract

We present some recent results on control and stabilization of waves on 1-d networks.The fine time-evolution of solutions of wave equations on networks and, consequently, their control theoretical properties, depend in a subtle manner on the topology of the network under consideration and also on the number theoretical properties of the lengths of the strings entering in it. Therefore, the overall picture is quite complex.In this paper we summarize some of the existing results on the problem of controllability that, by classical duality arguments in control theory, can be reduced to that of observability of the adjoint uncontrolled system. The problem of observability refers to that of recovering the total energy of solutions by means of measurements made on some internal or external nodes of the network. They lead, by duality, to controllability results guaranteeing that L 2-controls located on those nodes may drive sufficiently smooth solutions to equilibrium at a final time. Most of our results in this context, obtained in collaboration with R. Dáger, refer to the problem of controlling the network from one single external node. It is, to some extent, the most complex situation since, obviously, increasing the number of controllers enhances the controllability properties of the system. Our methods of proof combine sidewise energy estimates (that in the particular case under consideration can be derived by simply applying the classical d’Alembert’s formula), Fourier series representations, non-harmonic Fourier analysis, and number theoretical tools.These control results belong to the class of the so-called open-loop control systems.We then discuss the problem of closed-loop control or stabilization by feedback. We present a recent result, obtained in collaboration with J. Valein, showing that the observability results previously derived, regardless of the method of proof employed, can also be recast a posteriori in the context of stabilization, so to derive explicit decay rates (as \(t \rightarrow \infty \)) for the energy of smooth solutions. The decay rate depends in a very sensitive manner on the topology of the network and the number theoretical properties of the lengths of the strings entering in it.In the end of the article we also present some challenging open problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As mentioned above, most of this article is devoted to the case in which the observation is only done on one external node of the network.

  2. 2.

    Once more, we shall focus in the case in which one single controller acts on one of the external nodes of the network.

  3. 3.

    We refer to [48, 50] for relatively complete and updated surveys on the state of the art of the observability and controllability of PDE’s.

  4. 4.

    More rigorously, for the adjoint system, the initial data should be given at time t = T, but the system under consideration being time-reversible, we may consider equally that the initial data are given at t = 0.

References

  1. K. Ammari, M. Tucsnak, Stabilization of second order evolution equations by a class of unbounded feedbacks. ESAIM Control Optim. Calc. Var. 6, 361–386 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Avdonin, G. Leugering, V. Mikhaylov, On an inverse poblem for tree-like networks of elastic strings. ZAMM J. Appl. Math. Mech. 90(2), 136–150 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. M. I. Belishev, Boundary spectral inverse problem on a class of graphs (trees) by the BC method, Inverse Probl. 20, 647–672 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. C. Bardos, G. Lebeau, J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Optim. 30, 1024–1065 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Bégout, F. Soria, An interpolation inequality and its application to the stabilization of damped equations. J. Differ. Equ. 240(2), 324–356 (2007)

    Article  MATH  Google Scholar 

  6. G. Castro, E. Zuazua, Concentration and lack of observability of waves in highly heterogeneous media. Arch. Ration. Mech. Anal. 164(1), 39–72 (2001)

    Article  MathSciNet  Google Scholar 

  7. R. Dáger, E. Zuazua, in Wave Propagation, Observation and Control in 1{ -}d Flexible Multi-structures. Mathématiques & Applications (Springer, Berlin, 2006)

    Google Scholar 

  8. L. de Teresa, E. Zuazua, Null controllability of linear and semilinear heat equations in thin domains. Asymptot. Anal. 24, 295–317 (2000)

    MathSciNet  MATH  Google Scholar 

  9. P. Exner, O. Post, Convergence of graph-like thin manifolds. J. Geom. Phys. 54(1), 77–115 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. J. von Below, F. Ali Mehmeti, S. Nicaise (eds.), in Partial Differential Equations on Multistructures. Lecture Notes in Pure and Applied Mathematics, vol. 219 (Marcel Dekker, New York, 2001)

    Google Scholar 

  11. M. Gugat, M. Sigalotti, Star-shaped string networks: Switching boundary feedback stabilization. Networks Heterogeneous Media, 5(2), 299–314 (2010)

    Article  MathSciNet  Google Scholar 

  12. D. Grieser, Spectra of graph neighborhoods and scattering. Proc. London Math. Soc. 97(3), 718–752 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. C. Fabre, J.P. Puel, Pointwise controllability as limit of internal controllability for the wave equation in one space dimension. Portugal. Math. 51, 335–350 (1994)

    MathSciNet  MATH  Google Scholar 

  14. I. Figueiredo, E. Zuazua, Exact controllability and asymptotic limit of thin plates. Asymptot. Anal. 12, 213–252 (1996)

    MathSciNet  MATH  Google Scholar 

  15. J-M. Coron, G. Bastin, B. D’Andréa-Novel, Lyapunov stability analysis of networks of scalar conservation laws. Netw. Heterogeneous Media 2(4), 749–757 (2007)

    Google Scholar 

  16. J-M. Coron, G. Bastin, B. D’Andréa-Novel, On lyapunov stability of linearised saint-venant equations for a sloping channel. Netw. Heterogeneous Media 4(2), 177–187 (2009)

    Google Scholar 

  17. S. Hansen, E. Zuazua, Exact controllability and stabilization of a vibrating string with an interior point mass. SIAM J. Control Optim. 33(5), 1357–1391 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Haraux, S. Jaffard, Pointwise and spectral control of plate vibrations. Rev. Matemática Iberoamericana 7:1, 1–24 (1991)

    Google Scholar 

  19. L. Ignat, Strichartz estimates for the schrödinger equation on a tree and applications, SIAM J. Math. Anal. Appl. 42(5), 2041–2057 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Henrot, K. Ammari, M. Tucsnak, Asymptotic behaviour of the solutions and optimal location of the actuator for the pointwise stabilization of a string. Asymptot. Anal. 28(3–4), 215–240 (2001)

    MathSciNet  MATH  Google Scholar 

  21. H. Koch, E. Zuazua, in A Hybrid System of PDE’s Arising in Multi-structure Interaction: Coupling of Wave Equations in n and n − 1 Space Dimensions. Recent Trends in Partial Differential Equations. Contemporary Mathematics, vol. 409 (American Mathematical Society, Providence, 2006), pp. 55–77

    Google Scholar 

  22. P. Kuchment, in Quantum Graphs: An Introduction and a Brief Survey. Analysis on Graphs and Its Applications. Proceedings of the Symposium on Pure Mathematics, vol. 77 (American Mathematical Society, Providence, 2008), pp. 291–312

    Google Scholar 

  23. J.E. Lagnese, in Recent Progress and Open Problems in Control of Multi-link Elastic Structures. Contemporary Mathematics, vol. 209 (American Mathematical Society, Providence, 1997), pp. 161–175

    Google Scholar 

  24. J.E. Lagnese, G. Leugering, Domain Decomposition Methods in Optimal Control of Partial Differential Equations, vol. 148 (Birkhäuser, Basel, 2004)

    Book  MATH  Google Scholar 

  25. J.E. Lagnese, G. Leugering, E.J.P.G. Schmidt, in Modelling, Analysis and Control of Multi-link Flexible Structures. Systems and Control: Foundations and Applications (Birkhäuser, Basel, 1994)

    Google Scholar 

  26. G. Lebeau, E. Zuazua, Decay rates for the linear system of three-dimensional system of thermoelasticity. Arch. Ration. Mech. Anal. 148, 179–231 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. V. Lescarret, E. Zuazua, Numerical schemes for waves in multi-dimensional media: convergence in asymmetric spaces, preprint (2009)

    Google Scholar 

  28. A. Lopez, X. Zhang E. Zuazua, Null controllability of the heat equation as a singular limit of the exact controllability of dissipative wave equations. J. Math. Pures et Appl., 79, 741–809 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. J.-L. Lions, Contrôlabilité exacte de systèmes distribués. C. R. Acad. Sci. Paris Sér I 302, 471–475 (1986)

    MATH  Google Scholar 

  30. J.-L. Lions, Contrôlabilité exacte perturbations et stabilisation de systèmes distribués, vol. I (Masson, Paris, 1988)

    Google Scholar 

  31. J.L. Lions, Exact controllability, stabilizability and perturbations for distributed systems. SIAM Rev. 30, 1–68 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  32. G. Lumer, in Connecting of Local Operators and Evolution Equations on Networks. Lecture Notes in Mathematics, vol. 787 (Springer, Berlin, 1980), pp. 219–234

    Google Scholar 

  33. F. Ali Mehmeti, A characterization of a generalized \({C}^{\infty }\)-notion on nets. Integral Equ. Operator Theory 9(6), 753–766 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  34. S. Micu, E. Zuazua, An introduction to the controllability of linear PDE. in Quelques questions de théorie du contrôle, ed. by T. Sari. Collection Travaux en Cours (Hermann, Paris, 2005), pp. 69–157

    Google Scholar 

  35. L. Miller, Geometric bounds on the growth rate of null-controllability cost for the heat equation in small time. J. Differ. Equ. 204, 202–226 (2004)

    MATH  Google Scholar 

  36. S. Nicaise, Spectre des réseaux topologiques finis. Bull. Sci. Math. 111, 401–413 (1987)

    MathSciNet  MATH  Google Scholar 

  37. S. Nicaise, in Polygonal Interface Problems. Methoden und Verfahren Math. Physiks, Frankfurt/M., Berlin, Bern, New York, Paris, Wien, vol. 39 (Peter Lang, 1993)

    Google Scholar 

  38. Yu.V. Pokornyi, O.M. Penkin, E.N. Provotorova, in On a Vectorial Boundary Value Problem. Boundary Value Problems. Interuniv. Collect. Sci. Works, Perm’ (1983), pp. 64–70

    Google Scholar 

  39. D.L. Russell, A unified boundary controllability theory for hyperbolic and parabolic partial differential equations. Stud. Appl. Math. 52, 189–221 (1973)

    MATH  Google Scholar 

  40. Ch. Zheng, S. Ervedoza, E. Zuazua, On the observability of time-discrete conservative linear systems. J. Funct. Anal. 254(12), 3037–3078 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. J. Valein, E. Zuazua, Stabilization of the wave equation on 1-d networks. SIAM J. Control Optim. 48(4), 2771–2797 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. J. von Below, A characteristic equation associated to an eigenvalue problem on c 2-networks. Linear Algebra Appl. 71, 309–325 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  43. X. Zhang, E. Zuazua, Polynomial decay and control for a 1-d model of fluid-structure interaction. C. R. Acad. Sci. Paris, Sér. I 336, 745–750 (2003)

    Google Scholar 

  44. E. Zuazua, Null control of a 1-d model of mixed hyperbolic-parabolic type. in Optimal Control and Partial Differential Equations, ed. by J.L. Menaldi et al. (IOS Press, Amsterdam), pp. 198–210

    Google Scholar 

  45. E. Zuazua, Null controllability of the heat equation in thin domains, Equations aux dérivées partielles et applications. Articles dédiés à Jacques-Louis Lions, Proc. Sympos. Pure Math. vol. 77, Gauthier-Villars, pp. 787–801 (1998)

    Google Scholar 

  46. E. Zuazua, Switching control. J. Eur. Math. Soc., 2011 13, 85–117. doi: 10.4171/JEMS/245

    Article  MathSciNet  MATH  Google Scholar 

  47. E. Zuazua, in Some Problems and Results on the Controllability of Partial Differential Equations. Progress in Mathematics, vol. 169 (Birkhaüser, Basel, 1998), pp. 276–311

    Google Scholar 

  48. E. Zuazua, Controllability of partial differential equations and its semi-discrete approximations. Discrete Contin. Dyn. Syst. 8, 469–513 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  49. E. Zuazua, Propagation, observation, and control of waves approximated by finite difference methods. SIAM Rev. 47(2), 197–243 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  50. E. Zuazua, Controllability and observability of partial differential equations: Some results and open problems. in Handbook of Differential Equations: Evolutionary Equations, vol. 3, ed. by C.M. Dafermos, E. Feireisl (Elsevier Science, 2006), pp. 527–621

    Google Scholar 

Download references

Acknowledgements

The author has been partially supported by Grant MTM2008-03541 of the MICINN, Spain, the ERC Advanced Grant FP7-246775 NUMERIWAVES and the Grant PI2010-04 of the Basque Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Zuazua .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zuazua, E. (2013). Control and Stabilization of Waves on 1-d Networks. In: Modelling and Optimisation of Flows on Networks. Lecture Notes in Mathematics(), vol 2062. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32160-3_9

Download citation

Publish with us

Policies and ethics