Modeling and Optimization of Scalar Flows on Networks

  • Simone GöttlichEmail author
  • Axel Klar
Part of the Lecture Notes in Mathematics book series (LNM, volume 2062)


Detailed models based on partial differential equations characterizing the dynamics on single arcs of a network (roads, production lines, etc.) are considered. These models are able to describe the dynamical behavior in a network accurately. On the other hand, for large scale networks often strongly simplified dynamics or even static descriptions of the flow have been widely used for traffic flow or supply chain management due to computational reasons. In this paper, a unified presentation highlighting connections between the above approaches are given and furthermore, a hierarchy of dynamical models is developed including models based on partial differential equations and nonlinear algebraic equations or even combinatorial models based on linear equations. Special focus is on optimal control problems and optimization techniques where combinatorial and continuous optimization approaches are discussed and compared.


Supply Chain Optimal Control Problem Traffic Flow Riemann Problem Coupling Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We wish to thank all our collaborators and co-authors, in particular Michael Herty, Armin Fügenschuh and Alexander Martin. Parts of this work have been taken from the articles [15, 24, 25] as well as [16, 17, 36].


  1. 1.
    D. Armbruster, D. Marthaler, C. Ringhofer, Kinetic and fluid model hierarchies for supply chains. SIAM J. Multiscale Model. 2, 43–61 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    D. Armbruster, C. de Beer, M. Freitag, T. Jagalski, C. Ringhofer, Autonomous control of production networks using a pheromone approach. Phys. A 363, 104–114 (2006)CrossRefGoogle Scholar
  3. 3.
    D. Armbruster, P. Degond, C. Ringhofer, A model for the dynamics of large queuing networks and supply chains.. SIAM J. Appl. Math. 66, 896–920 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    D. Armbruster, P. Degond, C. Ringhofer, Kinetic and fluid models for supply chains supporting policy attributes. Bull. Inst. Math. Acad. Sinica 2, 433–460 (2007)MathSciNetzbMATHGoogle Scholar
  5. 5.
    A. Aw, M. Rascle, Resurrection of second order models of traffic flow. SIAM J. Appl. Math. 60, 916–938 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    A. Aw, A. Klar, T. Materne, M. Rascle, Derivation of continuum flow traffic models from microscopic follow the leader models. SIAM J. Appl. Math. 63, 259–278 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    R. Byrd, J. Nocedal, R. Schnabel, Representations of quasi-newton matrices and their use in limited memory methods. Math. Program. 63, 129–156 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    R. Byrd, P. Lu, J. Nocedal, C. Zhu, A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16, 1190–1208 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    C. Cercignani, The Boltzmann Equation and its Applications (Springer, New York, 1988)zbMATHCrossRefGoogle Scholar
  10. 10.
    G. Coclite, M. Garavello, B. Piccoli, Traffic flow on a road network. SIAM J. Math. Anal. 36, 1862–1886 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    R. Colombo, Hyperbolic phase transitions in traffic flow. SIAM J. Appl. Math. 63, 708–721 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    C. Daganzo, A continuum theory of traffic dynamics for freeways with special lanes. Transp. Res. B 31, 83–102 (1997)CrossRefGoogle Scholar
  13. 13.
    C.F. Daganzo, A theory of supply chains. in Lecture Notes in Economics and Mathematical Systems, vol. 526 (Springer, Berlin, 2003), p. viii, 123Google Scholar
  14. 14.
    C. D’Apice, R. Manzo, A fluid dynamic model for supply chains. Netw. Heterogenous Media 1, 379–389 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    A. Fügenschuh, M. Herty, A. Klar, A. Martin, Combinatorial and continuous models for the optimization of traffic flows on networks. SIOPT 16, 1155–1176 (2006)zbMATHGoogle Scholar
  16. 16.
    A. Fügenschuh, S. Göttlich, M. Herty, A. Klar, A. Martin, A discrete optimization approach to large scale supply networks based on partial differential equations. SIAM J. Sci. Comput. 30, 1490–1507 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    S. Göttlich, M. Herty, A. Klar, Network models for supply chains. Comm. Math. Sci. 3, 545–559 (2005)zbMATHGoogle Scholar
  18. 18.
    S. Göttlich, M. Herty, A. Klar, Modelling and optimization of supply chains on complex networks. Comm. Math. Sci. 4, 315–330 (2006)zbMATHGoogle Scholar
  19. 19.
    J. Greenberg, Extension and amplification of the Aw-Rascle model. SIAM J. Appl. Math. 62, 729–745 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    J. Greenberg, A. Klar, M. Rascle, Congestion on multilane highways. SIAM J. Appl. Math. 63, 818–833 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    M. Günther, A. Klar, T. Materne, R. Wegener, Multivalued fundamental diagrams and stop and go waves for continuum traffic flow equations. SIAM J. Appl. Math. 64, 468–483 (2003)MathSciNetzbMATHGoogle Scholar
  22. 22.
    D. Helbing, Improved fluid dynamic model for vehicular traffic. Phys. Rev. E 51, 3164 (1995)CrossRefGoogle Scholar
  23. 23.
    D. Helbing, A. Greiner, Modeling and simulation of multi-lane traffic flow. Phys. Rev. E 55, 5498–5507 (1975)CrossRefGoogle Scholar
  24. 24.
    M. Herty, A. Klar, Modelling, simulation and optimization of traffic flow networks. SIAM J. Sci. Comput. 25, 1066–1087 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    M. Herty, A. Klar, Simplified dynamics and optimization of large scale traffic networks. Math. Models Meth. Appl. Sci. 14, 1–23 (2004)MathSciNetCrossRefGoogle Scholar
  26. 26.
    M. Herty, M. Rascle, Coupling conditions for a class of second order models for traffic flow. SIAM J. Math. Anal. 38, 595–616 (2006)MathSciNetCrossRefGoogle Scholar
  27. 27.
    M. Herty, M. Gugat, A. Klar, G. Leugering, Optimal control for traffic flow networks. J. Optim. Theor. Appl. 126, 589–615 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    M. Herty, K. Kirchner, A. Klar, Instantaneous control for traffic flow. Math. Methods Appl. Sci. 30, 153–169 (2006)MathSciNetCrossRefGoogle Scholar
  29. 29.
    M. Herty, A. Klar, B. Piccoli, Existence of solutions for supply chain models based on partial differential equations.. SIAM J. Math. Anal. 39, 160–173 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    M. Hinze, K. Kunisch, Second order methods for optimal control of time-dependent fluid flow. SIAM J. Contr. Optim. 40, 925–946 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    M. Hinze, R. Pinnau, An optimal control approach to semiconductor design. M3AS 12, 89–107 (2002)Google Scholar
  32. 32.
    H. Holden, N. Risebro, A mathematical model of traffic flow on a network of unidirectional road. SIAM J. Math. Anal. 4, 999–1017 (1995)MathSciNetCrossRefGoogle Scholar
  33. 33.
    IBM ILOG CPLEX. IBM Deutschland Gmbh, 71137 Ehningen. Information available at
  34. 34.
    S. Jin, Z. Xin, The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Comm. Pure Appl. Math. 48, 235–276 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    C. Kelley, Iterative Methods for Linear and Nonlinear Equations (SIAM, Philadelphia, 1995)zbMATHCrossRefGoogle Scholar
  36. 36.
    C. Kirchner, M. Herty, S. Göttlich, A. Klar, Optimal control for continuous supply network models. Netw. Heterogenous Media 1, 675–688 (2006)zbMATHCrossRefGoogle Scholar
  37. 37.
    A. Klar, R. Wegener, A hierachy of models for multilane vehicular traffic I: Modeling. SIAM J. Appl. Math. 59, 983–1001 (1998)MathSciNetCrossRefGoogle Scholar
  38. 38.
    A. Klar, R. Wegener, Kinetic derivation of macroscopic anticipation models for vehicular traffic. SIAM J. Appl. Math. 60, 1749–1766 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    A. Klar, R. Kuehne, R. Wegener, Mathematical models for vehicular traffic. Surv. Math. Ind. 6, 215 (1996)zbMATHGoogle Scholar
  40. 40.
    E. Köhler, M. Skutella, Flows over time with load-dependent transit times, in SODA’02 Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete algorithms, Society for Industrial and Applied Mathematics Philadelphia, PA, USA, 174–183 (2002)Google Scholar
  41. 41.
    E. Köhler, M. Skutella, R.H. Möhring, Traffic networks and flows over time, in Book Algorithmics of Large and Complex Networks, Springer-Verlag Berlin, Heidelberg, 166–196 (2009)Google Scholar
  42. 42.
    S.N. Kruzkov, First order quasi linear equations in several independent variables. Math. USSR Sbornik 10, 217 (1970)CrossRefGoogle Scholar
  43. 43.
    R. Kühne, Macroscopic freeway model for dense traffic, in 9th International Symposium on Transportation and Traffic Theory, ed. by N. Vollmuller (VNU Science Press, Utrecht, 1984), pp. 21–42Google Scholar
  44. 44.
    J. Lebacque, M. Khoshyaran, First order macroscopic traffic flow models for networks in the context of dynamic assignment, Transportation Planning, ed. by M. Patriksson, K.A.P.M. Labbe, 119–140 (2002)Google Scholar
  45. 45.
    M. Lighthill, J. Whitham, On kinematic waves. Proc. R. Soc. Edinb. A229, 281–345 (1983)MathSciNetGoogle Scholar
  46. 46.
    S.G. Nash, A. Sofer, Linear and Nonlinear Programming (The McGraw-Hill Companies, New York/St. Louis/San Francisco, 1996)Google Scholar
  47. 47.
    P. Nelson, A kinetic model of vehicular traffic and its associated bimodal equilibrium solutions. Transp. Theor. Stat. Phys. 24, 383–408 (1995)zbMATHCrossRefGoogle Scholar
  48. 48.
    H. Payne, FREFLO: A macroscopic simulation model of freeway traffic. Transp. Res. Rec. 722, 68–75 (1979)Google Scholar
  49. 49.
    P. Spellucci, Numerische Verfahren der nichtlinearen Optimierung (Birkhäuser, Basel, 1993)zbMATHCrossRefGoogle Scholar
  50. 50.
    S. Ulbrich, A sensitivity and adjoint calculus for discontinuous solutions of hyperbolic conservation laws with source terms. SIAM J. Contr. Optim. 41, 740 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    S. Ulbrich, Adjoint-based derivative computations for the optimal control of discontinuous solutions of hyperbolic conservation laws. Syst. Contr. Lett. 3, 309 (2003)Google Scholar
  52. 52.
    G. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974)zbMATHGoogle Scholar
  53. 53.
    C. Zhu, R. Byrd, J. Lu, J. Nocedal, L-bfgs-b: Fortran subroutines for large scale bound constrained optimization. Technical Report, NAM-11, EECS Department, Northwestern University, 1994Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.University of Mannheim, School of Business Informatics and Mathematics, A5, 6MannheimGermany

Personalised recommendations