Advertisement

Operation Regimes and Slower-is-Faster-Effect in the Control of Traffic Intersections

  • Dirk Helbing
  • Amin Mazloumian
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2062)

Abstract

The efficiency of traffic flows in urban areas is known to crucially depend on signal operation. Here, elements of signal control are discussed, based on the minimization of overall travel times or vehicle queues. Interestingly, we find different operation regimes, some of which involve a “slower-is-faster effect”, where a delayed switching reduces the average travel times. These operation regimes characterize different ways of organizing traffic flows in urban road networks. Besides the optimize-one-phase approach, we discuss the procedure and advantages of optimizing multiple phases as well. To improve the service of vehicle platoons and support the self-organization of “green waves”, it is proposed to consider the price of stopping newly arriving vehicles.

Keywords

Traffic Flow Queue Length Traffic Light Green Time Road Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Author contributions: DH set up the model, performed the analytical calculations, and wrote the manuscript. AM produced the numerical results and figures, and derived the separating lines given by (94) and (95).

Acknowledgements: The authors would like to thank for partial support by the ETH Competence Center “Coping with Crises in Complex Socio-Economic Systems” (CCSS) through ETH Research Grant CH1-01 08-2, the VW Foundation Project I/82 697 on “Complex Self-Organizing Networks of Interacting Machines: Principles of Design, Control, and Functional Optimization”, the Daimler-Benz Foundation Project 25-01.1/07 on “BioLogistics”, and the “Cooperative Center for Communication Networks Data Analysis”, a NAP project sponsored by the Hungarian National Office of Research and Technology under Grant No. KCKHA005.

References

  1. 1.
    R. Barlovic, T. Huisinga, A. Schadschneider, M. Schreckenberg, Adaptive traffic light control in the ChSch model for city traffic, in Traffic and Granular Flow’03, ed. by P.H.L. Bovy, S.P. Hoogendoorn, M. Schreckenberg, D.E. Wolf (Springer, Berlin, 2004)Google Scholar
  2. 2.
    M. Ben-Akiva, A. de Palma, Some circumstances in which vehicles will reach their destinations earlier by starting later: Revisited. Transp. Sci. 20, 52–55 (1986)CrossRefGoogle Scholar
  3. 3.
    O. Biham, A.A. Middleton, D. Levine, Self-organization and a dynamical transition in traffic-flow models. Phys. Rev. A 46, R6124–R6127 (1992)CrossRefGoogle Scholar
  4. 4.
    D. Braess, Über ein Paradoxon der Verkehrsplanung. Unternehmensforsch. 12, 258–268 (1968)MathSciNetzbMATHGoogle Scholar
  5. 5.
    E. Brockfeld, R. Barlovic, A. Schadschneider, M. Schreckenberg, Optimizing traffic lights in a cellular automaton model for city traffic. Phys. Rev. E 64, 056132 (2001)CrossRefGoogle Scholar
  6. 6.
    C. Chase, P.J. Ramadge, On real-time scheduling policies for flexible manufacturing systems. IEEE Trans. Autom. Contr. 37(4), 491–496 (1992)MathSciNetCrossRefGoogle Scholar
  7. 7.
    D. Chowdhury, A. Schadschneider, Self-organization of traffic jams in cities: Effects of stochastic dynamics and signal periods. Phys. Rev. E 59, R1311–R1314 (1999)CrossRefGoogle Scholar
  8. 8.
    R.B. Cooper, S.-C. Niu, M.M. Srinivasan, When does forced idle time improve performance in polling models? Manag. Sci. 44, 1079–1086 (2000)CrossRefGoogle Scholar
  9. 9.
    J. Esser, M. Schreckenberg, Microscopic simulation of urban traffic based on cellular automata. Int. J. Mod. Phys. B 8, 1025–1036 (1997)CrossRefGoogle Scholar
  10. 10.
    B. Faieta, B.A. Huberman, Firefly: a synchronization strategy for urban traffic control. Internal Report No. SSL-42, Xerox PARC, Palo Alto, 1993Google Scholar
  11. 11.
    G. Feichtinger, R.F. Hartl, Optimale Kontrolle ökonomischer Prozesse [Optimal Control of Economic Processes] (de Gruyter, Berlin, 1986)Google Scholar
  12. 12.
    M. Fouladvand, M. Nematollahi, Optimization of green-times at an isolated urban crossroads. Eur. Phys. J. B 22, 395–401 (2001)CrossRefGoogle Scholar
  13. 13.
    M.E. Fouladvand, M.R. Shaebani, Z. Sadjadi, Simulation of intelligent controlling of traffic flow at a small city network. J. Phys. Soc. Jpn. 73, 3209 (2004)CrossRefGoogle Scholar
  14. 14.
    M.E. Fouladvand, Z. Sadjadi, M.R. Shaebani, Optimized traffic flow at a single intersection: traffic responsive signalization. J. Phys. A 37, 561–576 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    M. Garavello, B. Piccoli, Traffic Flow on Networks (American Institute of Mathematical Sciences, Springfield, 2006); Y. Chitour, B. Piccoli, Traffic circles and timing of traffic lights for cars flow. Discrete Cont. Dyn. Syst. B 5, 599–630 (2005)Google Scholar
  16. 16.
    C. Gershenson, Self-Organizing traffic lights. Complex Syst. 16, 29–53 (2005)Google Scholar
  17. 17.
    S.-B. Cools, C. Gershenson, B. D’Hooghe, Self-organizing traffic lights: A realistic simulation, in Advances in Applied Self-Organizing Systems, ed. by M. Prokopenko (Springer, New York, 2007)Google Scholar
  18. 18.
    D. Helbing, A section-based queueing-theoretical traffic model for congestion and travel time analysis in networks. J. Phys. Math. Gen. 36, L593–L598 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    D. Helbing, Production, supply, and traffic systems: A unified description. in Traffic and Granular Flow ’03, ed. by S.P. Hoogendoorn, S. Luding, P.H.L. Bovy, M. Schreckenberg, D.E. Wolf (Springer, Berlin, 2005), pp. 173–188CrossRefGoogle Scholar
  20. 20.
    D. Helbing, Derivation of a fundamental diagram for urban traffic flow. Eur. Phys. J. B 70, 229–241 (2009)MathSciNetCrossRefGoogle Scholar
  21. 21.
    D. Helbing, S. Lämmer, Verfahren zur Koordination konkurrierender Prozesse oder zur Steuerung des Transports von mobilen Einheiten innerhalb eines Netzwerkes [Method for coordination of concurrent processes for control of the transport of mobile units within a network]. Patent WO/2006/122528 (2006)Google Scholar
  22. 22.
    D. Helbing, I. Farkas, T. Vicsek, Simulating dynamical features of escape panic. Nature 407, 487–490 (2000)CrossRefGoogle Scholar
  23. 23.
    D. Helbing, R. Jiang, M. Treiber, Analytical investigation of oscillations in intersecting flows of pedestrian and vehicle traffic. Phys. Rev. E 72, 046130 (2005)CrossRefGoogle Scholar
  24. 24.
    D. Helbing, R. Jiang, M. Treiber, Analytical investigation of oscillations in intersecting flows of pedestrian and vehicle traffic. Phys. Rev. E 72, 046130 (2005); R. Jiang, D. Helbing, P.K. Shukla, Q.-S. Wu, Inefficient emergent oscillations in intersecting driven many-particle flows. Phys. A 368, 567–574 (2006)Google Scholar
  25. 25.
    D. Helbing, S. Lämmer, J.-P. Lebacque, Self-organized control of irregular or perturbed network traffic, in Optimal Control and Dynamic Games, ed. by C. Deissenberg, R.F. Hartl (Springer, Dordrecht, 2005), pp. 239–274CrossRefGoogle Scholar
  26. 26.
    D. Helbing, A. Johansson, J. Mathiesen, M.H. Jensen, A. Hansen, Analytical approach to continuous and intermittent bottleneck flows. Phys. Rev. Lett. 97, 168001 (2006)CrossRefGoogle Scholar
  27. 27.
    D. Helbing, T. Seidel, S. Lämmer, K. Peters (2006) Self-organization principles in supply networks and production systems, in Econophysics and Sociophysics—Trends and Perspectives, ed. by B.K. Chakrabarti, A. Chakraborti, A. Chatterjee (Wiley, Weinheim, 2006), pp. 535–558Google Scholar
  28. 28.
    D. Helbing, J. Siegmeier, S. Lämmer, Self-organized network flows. Netw. Heterogeneous Media 2, 193–210 (2007)zbMATHCrossRefGoogle Scholar
  29. 29.
    D.-w. Huang, W.-n. Huang, Traffic signal synchronization. Phys. Rev. E 67, 056124 (2003)Google Scholar
  30. 30.
    J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of the IEEE International Conference on Neural Networks, vol. 4, Perth, 27 November 1995 to 01 December 1995, pp. 1942–1948Google Scholar
  31. 31.
    A. Kesting, M. Treiber, M. Schönhof, D. Helbing, Extending adaptive cruise control to adaptive driving strategies. Transp. Res. Rec. 2000, 16–24 (2007)CrossRefGoogle Scholar
  32. 32.
    S. Lämmer, Reglerentwurf zur dezentralen Online-Steuerung von Lichtsignalanlagen in Straßennetzwerken [Controller design for a decentralized control of traffic lights in urban road networks]. Ph.D. Thesis, Dresden University of Technology, 2007Google Scholar
  33. 33.
    S. Lämmer, D. Helbing, Self-control of traffic lights and vehicle flows in urban road networks. J. Stat. Mech. (JSTAT), 2008, P04019 (2008)Google Scholar
  34. 34.
    S. Lämmer, H. Kori, K. Peters, D. Helbing Decentralised control of material or traffic flows in networks using phase-synchronisation. Phys. A 363, 39–47 (2006)Google Scholar
  35. 35.
    S. Lämmer, R. Donner, D. Helbing, Anticipative control of switched queueing systems. Eur. Phys. J. B 63, 341–348 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    T. Nagatani, Jamming transition in the traffic-flow model with two-level crossings. Phys. Rev. E 48, 3290–3294 (1993)CrossRefGoogle Scholar
  37. 37.
    T. Nagatani, Control of vehicular traffic through a sequence of traffic lights positioned with disordered interval. Phys. Stat. Mech. Appl. 368, 560–566 (2006)CrossRefGoogle Scholar
  38. 38.
    T. Nakatsuji, S. Seki, T. Kaku, Development of a self-organizing traffic control system using neural network models. Transp. Res. Rec. 1324, 137–145 (1995)Google Scholar
  39. 39.
    C.H. Papadimitriou, J.N. Tsitsiklis, The complexity of optimal queuing network control. Math. Oper. Res. 24, 293–305 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    T. Roughgarden, Selfish Routing and the Price of Anarchy (MIT, Cambridge, 2005)Google Scholar
  41. 41.
    M. Sasaki, T. Nagatani, Transition and saturation of traffic flow controlled by traffic lights. Phys. Stat. Mech. Appl. 325 531–546 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    M. Schönhof, M. Treiber, A. Kesting, D. Helbing, Autonomous detection and anticipation of jam fronts from messages propagated by intervehicle communication. Transp. Res. Rec. 1999, 3–12 (2007)CrossRefGoogle Scholar
  43. 43.
    D. Schrank, T. Lomax, The 2005 Urban Mobility Report (Texas Transportation Institute, College Station Texas, 2005)Google Scholar
  44. 44.
    K. Sekiyama, J. Nakanishi, I. Takagawa, T. Higashi, T. Fukuda, Self-organizing control of urban traffic signal network. IEEE Int. Conf. Syst. Man. Cybern. 4, 2481–2486 (2001)Google Scholar
  45. 45.
    P.M. Simon, K. Nagel, Simplified cellular automaton model for city traffic. Phys. Rev. E 58, 1286–1295 (1998)CrossRefGoogle Scholar
  46. 46.
    R.J. Smeed, Some circumstances in which vehicles will reach their destinations earlier by starting later. Transp. Sci. 1, 308–317 (1967)CrossRefGoogle Scholar
  47. 47.
    H.-U. Stark, C.J. Tessone, F. Schweitzer, Slower-is-faster: Fostering consensus formation by heterogeneous inertia. Adv. Complex Syst. 11(4), 551–563 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    R. Steinberg, R.E. Stone, The prevalence of paradoxes in transportation equilibrium problems. Transp. Sci. 22, 231–241 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    B.A. Toledo, V. Munoz, J. Rogan, C. Tenreiro, J.A. Valdivia, Modeling traffic through a sequence of traffic lights. Phys. Rev. E 70, 016107 (2004)CrossRefGoogle Scholar
  50. 50.
    G.B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.ETH Zurich, UNO D11ZurichSwitzerland

Personalised recommendations