Semidefinite Relaxations for Mixed 0-1 Second-Order Cone Program

  • Agnès Gorge
  • Abdel Lisser
  • Riadh Zorgati
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7422)


We investigate semidefinite relaxations for mixed 0-1 Second-Order Cone Programs. Central to our approach is the reformulation of the problem as a non convex Quadratically Constrained Quadratic Program (QCQP), an approach that situates this problem in the framework of binary quadratically constrained quadratic programming. This allows us to apply the well-known semidefinite relaxation for such problems. This relaxation is strengthened by the addition of constraints of the initial problem expressed in the form of semidefinite constraints. We report encouraging computational results indicating that the semidefinite relaxation improves significantly the continuous relaxation (112% on average) and that it often provides a lower bound very close to the optimal value. In addition, the computational time for obtaining these results remains reasonable.


Combinatorial Optimization Mixed-Integer Second-Order Cone Program Semidefinite Relaxation Quadratically Constrained Quadratic Program 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Prog. 95, 3–51 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Atamtürk, A., Narayanan, V.: Conic mixed-integer rounding cuts. Math. Prog. 122, 1–20 (2010)zbMATHCrossRefGoogle Scholar
  3. 3.
    Billionnet, A., Elloumi, S., Lambert, A.: Extending the QCR method to general mixed-integer programs. Math. Prog. 131(1), 381–401 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Drewes, S., Ulbrich, S.: Subgradient Based Outer Approximation for Mixed Integer Second Order Cone Programming. In: Lee, J., Leyffer, S. (eds.) Mixed-Integer Nonlinear Optimization: Algorithmic Advances and Applications. IMA Volume Series. Springer (2010)Google Scholar
  5. 5.
    Goemans, M.X., Williamson, D.P.: Approximation algorithms for MAX-3-CUT and other problems via complex semidefinite programming. Journal of Computer and System Sciences 68(2), 442–470 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Helmberg, C., Rendl, F.: Solving quadratic (0; 1)-problems by semidefinite programs and cutting planes. Math. Prog. 82(3), 291–315 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Iyengar, G., Cezik, M.T.: Cuts for mixed 0-1 conic programs. CORC technical report TR-2001-03 (2005)Google Scholar
  8. 8.
    Laurent, M., Poljak, S., Rendl, F.: Connections between semidefinite relaxations of the max-cut and stable set problems. Math. Prog. 77, 225–246 (1997)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Letchford, A., Galli, L.: Reformulating Mixed-Integer Quadratically Constrained Quadratic Programs. Technical report, Department of Management Science, Lancaster Univ. (2011)Google Scholar
  10. 10.
    Lobo, M.S., Vandenberghe, L., Lebret, H., Boyd, S.: Applications of Second-order Cone Programming. Linear Algebra and its Applications 284, 193–228 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Roupin, F.: From Linear to Semidefinite Programming: an Algorithm to obtain Semidefinite Relaxations for Bivalent Quadratic Problems. Jour. of Comb. Opt. 8(4), 469–493 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Saxena, A., Bonami, P., Lee, J.: Convex relaxations of non-convex mixed integer quadratically constrained programs: Extended formulations. Math. Prog. 124(1-2), 383–411 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Saxena, A., Bonami, P., Lee, J.: Convex relaxations of non-convex mixed integer quadratically constrained programs: Projected formulations. Math. Prog. 130(2), 359–413 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Shor, N.Z.: Quadratic optimization problems. Soviet Journal of computer Systems Sciences 25, 1–11 (1987)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software 11-12, 625–653 (1999)Google Scholar
  16. 16.
    Stubbs, R., Mehrotra, S.: A branch-and-cut method for 0-1 mixed convex programming. Math. Prog. 86, 515–532 (1999)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Agnès Gorge
    • 1
  • Abdel Lisser
    • 1
  • Riadh Zorgati
    • 2
  1. 1.LRIUniversité Paris-Sud OrsayOrsayFrance
  2. 2.EDF R&D, OSIRISClamartFrance

Personalised recommendations