Recognition Algorithms for Binary Signed-Graphic Matroids

  • Konstantinos Papalamprou
  • Leonidas Pitsoulis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7422)


In this paper we provide two recognition algorithms for the class of signed-graphic matroids along with necessary and sufficient conditions for a matroid to be signed-graphic. Specifically, we provide a polynomial-time algorithm which determines whether a given binary matroid is signed-graphic and an algorithm which determines whether a general matroid given by an independence oracle is binary signed-graphic.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Appa, G., Kotnyek, B.: Rational and integral k-regular matrices. Discrete Mathematics 275, 1–15 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Appa, G., Kotnyek, B.: A bidirected generalization of network matrices. Networks 47, 185–198 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bixby, R.E., Cunningham, W.H.: Converting linear programs to network problems. Mathematics of Operations Research 5, 321–357 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Camion, P.: Characterization of totally unimodular matrices. Proceedings of the American Mathematical Society 16, 1068–1073 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Camion, P.: Caractérisation des matrices unimodulaires. Cahier du Centre d’Études de Recherche Opérationelle 5, 181–190 (1963)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Cornuejols, G.: Combinatorial Optimization - Packing and Covering. Society for Industrial and Applied Mathematics (2001)Google Scholar
  7. 7.
    Coullard, C.R., Del Greco, J.G., Wagner, D.K.: Recognizing a Class of Bicircular Matroids. Discrete Applied Mathematics 43, 197–215 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Diestel, R.: Graph Theory. Graduate Texts in Mathematics. Springer (2005)Google Scholar
  9. 9.
    Del Greco, J.G.: Characterizing bias matroids. Discrete Mathematics 103, 153–159 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Kotnyek, B.: A generalisation of totally unimodular and network matrices. PhD thesis, London School of Economics and Political Science, London, UK (2002)Google Scholar
  11. 11.
    Lee, J.: The incidence structure with well-scaled frames. Journal of Combinatorial Theory Series B 50, 265–287 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Musitelli, A.: Recognizing binet matrices. Mathematical Programming 124, 349–381 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Musitelli, A.: Recognition of Generalised Network Matrices. PhD. Thesis, Ecole Polytechnique Federale de Lausanne (2007)Google Scholar
  14. 14.
    Oxley, J.G.: Matroid Theory. Oxford University Press (2006)Google Scholar
  15. 15.
    Pagano, S.R.: Separability and representability of bias matroids of signed graphs. PhD thesis, Binghampton University (1998)Google Scholar
  16. 16.
    Papalamprou, K., Pitsoulis, L.: Decomposition of binary signed-graphic matroids (submitted) Preprint,
  17. 17.
    Papalamprou, K., Pitsoulis, L.: Recognition algorithms for binary signed-graphic matroids (2012),
  18. 18.
    Seymour, P.D.: Decomposition of regular matroids. Journal of Combinatorial Theory Series B 28, 305–359 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Seymour, P.D.: Recognizing graphic matroids. Combinatorica 1, 75–78 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Slilaty, D.: Projective-planar signed graphs and tangled signed graphs. Journal of Combinatorial Theory Series B 97, 693–717 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Slilaty, D., Qin, H.: Decompositions of signed-graphic matroids. Discrete Mathematics 307, 2187–2199 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Strang, G.: Linear Algebra and Its Applications. Brooks Cole (2005)Google Scholar
  23. 23.
    Truemper, K.: Matroid Decomposition. Leibniz (1998)Google Scholar
  24. 24.
    Tutte, W.T.: An algorithm for determining whether a given binary matroid is graphic. Proceedings of the American Mathematical Society 11, 905–917 (1960)MathSciNetGoogle Scholar
  25. 25.
    Whittle, G.: On matroids representable over GF(3) and other fields. Transactions of the American Mathematical Society 349, 579–603 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Zaslavsky, T.: Signed graphs. Discrete Applied Mathematics 4, 47–74 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Zaslavsky, T.: Biased graphs. II. The three matroids. Journal of Combinatorial Theory Series B 51, 46–72 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Zaslavsky, T.: Orientation of signed graphs. European Journal of Combinatorics 12, 361–375 (1991)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Konstantinos Papalamprou
    • 1
  • Leonidas Pitsoulis
    • 2
  1. 1.Management Science Group, Department of ManagementLondon School of Economics and Political ScienceLondonUK
  2. 2.Department of Mathematical, Physical and Computational Sciences, Faculty of EngineeringAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations