Advertisement

Recognition Algorithms for Binary Signed-Graphic Matroids

  • Konstantinos Papalamprou
  • Leonidas Pitsoulis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7422)

Abstract

In this paper we provide two recognition algorithms for the class of signed-graphic matroids along with necessary and sufficient conditions for a matroid to be signed-graphic. Specifically, we provide a polynomial-time algorithm which determines whether a given binary matroid is signed-graphic and an algorithm which determines whether a general matroid given by an independence oracle is binary signed-graphic.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Appa, G., Kotnyek, B.: Rational and integral k-regular matrices. Discrete Mathematics 275, 1–15 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Appa, G., Kotnyek, B.: A bidirected generalization of network matrices. Networks 47, 185–198 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bixby, R.E., Cunningham, W.H.: Converting linear programs to network problems. Mathematics of Operations Research 5, 321–357 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Camion, P.: Characterization of totally unimodular matrices. Proceedings of the American Mathematical Society 16, 1068–1073 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Camion, P.: Caractérisation des matrices unimodulaires. Cahier du Centre d’Études de Recherche Opérationelle 5, 181–190 (1963)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Cornuejols, G.: Combinatorial Optimization - Packing and Covering. Society for Industrial and Applied Mathematics (2001)Google Scholar
  7. 7.
    Coullard, C.R., Del Greco, J.G., Wagner, D.K.: Recognizing a Class of Bicircular Matroids. Discrete Applied Mathematics 43, 197–215 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Diestel, R.: Graph Theory. Graduate Texts in Mathematics. Springer (2005)Google Scholar
  9. 9.
    Del Greco, J.G.: Characterizing bias matroids. Discrete Mathematics 103, 153–159 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Kotnyek, B.: A generalisation of totally unimodular and network matrices. PhD thesis, London School of Economics and Political Science, London, UK (2002)Google Scholar
  11. 11.
    Lee, J.: The incidence structure with well-scaled frames. Journal of Combinatorial Theory Series B 50, 265–287 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Musitelli, A.: Recognizing binet matrices. Mathematical Programming 124, 349–381 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Musitelli, A.: Recognition of Generalised Network Matrices. PhD. Thesis, Ecole Polytechnique Federale de Lausanne (2007)Google Scholar
  14. 14.
    Oxley, J.G.: Matroid Theory. Oxford University Press (2006)Google Scholar
  15. 15.
    Pagano, S.R.: Separability and representability of bias matroids of signed graphs. PhD thesis, Binghampton University (1998)Google Scholar
  16. 16.
    Papalamprou, K., Pitsoulis, L.: Decomposition of binary signed-graphic matroids (submitted) Preprint, http://arxiv.org/
  17. 17.
    Papalamprou, K., Pitsoulis, L.: Recognition algorithms for binary signed-graphic matroids (2012), http://arxiv.org/
  18. 18.
    Seymour, P.D.: Decomposition of regular matroids. Journal of Combinatorial Theory Series B 28, 305–359 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Seymour, P.D.: Recognizing graphic matroids. Combinatorica 1, 75–78 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Slilaty, D.: Projective-planar signed graphs and tangled signed graphs. Journal of Combinatorial Theory Series B 97, 693–717 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Slilaty, D., Qin, H.: Decompositions of signed-graphic matroids. Discrete Mathematics 307, 2187–2199 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Strang, G.: Linear Algebra and Its Applications. Brooks Cole (2005)Google Scholar
  23. 23.
    Truemper, K.: Matroid Decomposition. Leibniz (1998)Google Scholar
  24. 24.
    Tutte, W.T.: An algorithm for determining whether a given binary matroid is graphic. Proceedings of the American Mathematical Society 11, 905–917 (1960)MathSciNetGoogle Scholar
  25. 25.
    Whittle, G.: On matroids representable over GF(3) and other fields. Transactions of the American Mathematical Society 349, 579–603 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Zaslavsky, T.: Signed graphs. Discrete Applied Mathematics 4, 47–74 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Zaslavsky, T.: Biased graphs. II. The three matroids. Journal of Combinatorial Theory Series B 51, 46–72 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Zaslavsky, T.: Orientation of signed graphs. European Journal of Combinatorics 12, 361–375 (1991)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Konstantinos Papalamprou
    • 1
  • Leonidas Pitsoulis
    • 2
  1. 1.Management Science Group, Department of ManagementLondon School of Economics and Political ScienceLondonUK
  2. 2.Department of Mathematical, Physical and Computational Sciences, Faculty of EngineeringAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations