Advertisement

Two-Agent Scheduling on an Unbounded Serial Batching Machine

  • Mikhail Y. Kovalyov
  • Ammar Oulamara
  • Ameur Soukhal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7422)

Abstract

We study a scheduling problem, in which two agents compete to perform their jobs on the same serial batching machine. On this machine, jobs of the same batch start and complete simultaneously and the batch processing time is equal to the total processing time of its jobs. Each agent aims at minimizing a function which depends only on the completion times of its jobs. The problem is to find a schedule that minimizes the objective function of one agent, subject to the objective function of the other agent does not exceed a given threshold Q. Polynomial and pseudo-polynomial time algorithms are derived for settings with various combinations of the objective functions.

Keywords

Scheduling Serial batching machine Multi-agent Complexity Dynamic Programming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agnetis, A., Mirchandani, P.B., Pacciarelli, D., Pacifici, A.: Nondominated schedules for a job-shop with two competing users. Computational & Mathematical Organization Theory 6, 191–217 (2000)CrossRefGoogle Scholar
  2. 2.
    Agnetis, A., Mirchandani, P.B., Pacciarelli, D., Pacifici, A.: Scheduling problems with two competing agents. Operations Research 52, 229–242 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Agnetis, A., Pacciarelli, D., Pacifici, A.: Multi-agent single machine scheduling. Annals of Operations Research 150, 3–15 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Agnetis, A., Pacciarelli, D., Pacifici, A.: Combinatorial models for multi agent scheduling problems. In: Levner, E. (ed.) Multiprocessor Scheduling, Theory and Applications, pp. 21–46. I-Tech Education and Publishing, Vienna (2008) ISBN 978-3-902613-02-8Google Scholar
  5. 5.
    Albers, S., Brucker, P.: The complexity of one-machine batching problems. Discrete Applied Mathematics 47, 87–107 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Baker, K., Smith, J.C.: A multiple-criterion model for machine scheduling. Journal of Scheduling 6, 7–16 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Balasubramanian, H., Fowler, J., Keha, A., Pfund, M.: Scheduling interfering job sets on parallel machines. European Journal of Operational Research 199, 55–67 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Brucker, P., Kovalyov, M.Y.: Single machine batch scheduling to minimize the weighted number of late jobs. Mathematical Methods of Operations Research 43, 1–8 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Cheng, T.C.E., Kovalyov, M.Y.: Single machine batch scheduling with sequential job processing. IIE Transactions 33, 413–420 (2001)Google Scholar
  10. 10.
    Cheng, T.C.E., Kovalyov, M.Y., Chakhlevich, K.N.: Batching in a two-stage flowshop with dedicated machines in the second stage. IIE Transactions 36, 87–93 (2004)CrossRefGoogle Scholar
  11. 11.
    Cheng, T.C.E., Ng, C.T., Yuan, J.J.: Multi-agent scheduling on a single machine to minimize total weighted number of tardy jobs. Theoretical Computer Science 362, 273–281 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Coffman Jr., E.G., Yannakakis, M., Magazine, M.J., Santos, C.A.: Batch sizing and job sequencing on a single machine. Annals of Operations Research 26, 135–147 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Gavranovic, H., Finke, G.: Graph partitioning and set covering for optimal design of production system in the metal industry. In: Proceedings of the second Conference on Management and Control of Production and Logistics - MCPL 2000, Grenoble (2000)Google Scholar
  14. 14.
    Glass, C.A., Potts, C.N., Strusevich, V.A.: Scheduling batches with sequential job processing for two-machine flow and open shops. INFORMS Journal on Computing 13, 120–137 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Hall, N.G., Potts, C.N.: Rescheduling for new orders. Operations Research 52, 440–453 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Hochbaum, D.S., Landy, D.: Scheduling with batching: Minimizing the weighted number of tardy jobs. Operations Research Letters 16, 79–86 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Hoogeveen, J.: Multicriteria Scheduling. European Journal of Operational Research 167, 592–623 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Kovalyov, M.Y., Potts, C.N., Strusevich, V.A.: Batching decisions for assembly production systems. European Journal of Operational Research 157, 620–642 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Kubzin, M.A., Strusevich, V.A.: Planning machine maintenance in two-machne shop scheduling. Operations Research 54, 789–800 (2006)zbMATHCrossRefGoogle Scholar
  20. 20.
    Leung, J.Y.T., Pinedo, M., Wan, G.: Competitive Two-Agent Scheduling and Its Applications. Operations Research 58, 458–469 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Oulamara, A., Finke, G., Kamgaing Kuiten, A.: Flowshop scheduling problem with batching machine and task compatibilities. Computers & Operations Research 36, 391–401 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Oulamara, A., Kovalyov, M.Y., Finke, G.: Scheduling a no-wait flowshop with unbounded batching machines. IIE Transactions on Scheduling and logistics 37, 685–696 (2005)Google Scholar
  23. 23.
    Potts, C.N., Kovalyov, M.Y.: Scheduling with batching: A review. Journal of Operational Research 120, 228–249 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Potts, C.N., Van Wassenhove, L.N.: Integrating scheduling with batching and lotsizing: A review of algorithms and complexity. Operations Research Society 42, 395–406 (1992)Google Scholar
  25. 25.
    Shen, W., Hao, Q., Joong Yoon, H., Norrie, D.H.: Applications of agent-based systems in intelligent manufacturing: An updated review. Advanced Engineering Informatics 20, 415–431 (2006)CrossRefGoogle Scholar
  26. 26.
    T’kindt, V., Billaut, J.-C.: Multicriteria Scheduling: Theory, Models and Algorithms, 2nd edn. Springer (2006)Google Scholar
  27. 27.
    Uzsoy, R., Yang, Y.: Minimizing total weighted completion time on a single batch processing machine. Production and Operations Management 6, 57–73 (1997)CrossRefGoogle Scholar
  28. 28.
    Webster, S., Baker, K.R.: Scheduling groups of jobs on a single machine. Operations Research 43, 692–704 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Yuan, J.J., Shang, W.P., Feng, Q.: A note on the scheduling with two families of jobs. Journal of Scheduling 8, 537–542 (2005)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mikhail Y. Kovalyov
    • 1
  • Ammar Oulamara
    • 2
  • Ameur Soukhal
    • 3
  1. 1.United Institute of Informatics ProblemsNational Academy of Sciences of BelarusMinskBelarus
  2. 2.LORIA -UMR 7503 laboratoryNancy University - INPLVandoeuvre-les-Nancy CedexFrance
  3. 3.Laboratory of Computer Science, Team Scheduling and Control (ERL CNRS 6305)François Rabelais University of ToursToursFrance

Personalised recommendations