Advertisement

Constrained Matching Problems in Bipartite Graphs

  • Monaldo Mastrolilli
  • Georgios Stamoulis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7422)

Abstract

We study the following generalization of maximum matchings in bipartite graphs: given a bipartite graph such that each edge has a unique color c j , we are asked to find a maximum matching that has no more than w j edges of color c j . We study bi-criteria approximation algorithms for this problem based on linear programming techniques and we show how we can obtain a family of algorithms with varying performance guarantees that can violate the color bounds. Our problem is motivated from network problems in optical fiber technologies.

Keywords

Bipartite Graph Total Charge Match Problem Maximum Match Color Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bampas, E., Pagourtzis, A., Potika, K.: An experimental study of maximum profit wavelength assignment in wdm rings. Networks 57(3), 285–293 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bansal, N., Khandekar, R., Nagarajan, V.: Additive guarantees for degree-bounded directed network design. SIAM J. Comput. 39(4), 1413–1431 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Berger, A., Bonifaci, V., Grandoni, F., Schäfer, G.: Budgeted Matching and Budgeted Matroid Intersection Via the Gasoline Puzzle. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp. 273–287. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Caragiannis, I.: Wavelength Management in WDM Rings to Maximize the Number of Connections. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 61–72. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Carrabs, F., Cerulli, R., Gentili, M.: The labeled maximum matching problem. Computers & OR 36(6), 1859–1871 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Chekuri, C., Vondrák, J., Zenklusen, R.: Multi-budgeted Matchings and Matroid Intersection via Dependent Rounding. In: SODA (2011)Google Scholar
  7. 7.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman (1979)Google Scholar
  8. 8.
    Grandoni, F., Ravi, R., Singh, M.: Iterative Rounding for Multi-Objective Optimization Problems. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 95–106. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Grandoni, F., Zenklusen, R.: Optimization with more than one budget. CoRR abs/1002.2147 (2010)Google Scholar
  10. 10.
    Itai, A., Rodeh, M.: Some Matching Problems. In: Salomaa, A., Steinby, M. (eds.) ICALP 1977. LNCS, vol. 52, pp. 258–268. Springer, Heidelberg (1977)CrossRefGoogle Scholar
  11. 11.
    Itai, A., Rodeh, M., Tanimoto, S.L.: Some matching problems for bipartite graphs. J. ACM 25(4), 517–525 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Lau, L. C., Ravi, R., and Singh, M. Iterative Methods in Combinatorial Optimization. Cambridge University Press (2011)Google Scholar
  13. 13.
    Monnot, J.: The labeled perfect matching in bipartite graphs. Inf. Process. Lett. 96(3), 81–88 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Monnot, J.: On Complexity and Approximability of the Labeled Maximum/Perfect Matching Problems. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 934–943. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Nomikos, C., Pagourtzis, A., Zachos, S.: Minimizing request blocking in all-optical rings. In: IEEE INFOCOM (2003)Google Scholar
  16. 16.
    Nomikos, C., Pagourtzis, A., Zachos, S.: Randomized and Approximation Algorithms for Blue-Red Matching. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 715–725. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Schrijver, A. Theory of Linear and Integer Programming. John Wiley & sons (1998)Google Scholar
  18. 18.
    Singh, M. Iterative Methods in Combinatorial Optimization. PhD thesis, Carnegie Mellon University (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Monaldo Mastrolilli
    • 1
  • Georgios Stamoulis
    • 1
  1. 1.IDSIAManno-LuganoSwitzerland

Personalised recommendations