Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice Hall (1993)
Google Scholar
Al-Mouhamed, M., Dandashi, A.: Graph Coloring for class scheduling. In: IEEE/ACS Internation Conference on Computer Systems and Applications (AICCSA), pp. 1–4 (2010)
Google Scholar
Berge, C.: Graphes et hypergraphes. Dunod, Paris (1970)
MATH
Google Scholar
Chung, Y., Demange, M.: On inverse chromatic number problems. Electronic Notes in Discrete Mathematics 36, 1129–1136 (2010)
CrossRef
Google Scholar
Berman, P., Karpinski, M., Scott, A.D.: Approximation Hardness of Short Symmetric Instances of MAX-3SAT. Electronic Colloquium on Computational Complexity. Technical Report TR03-049 (2003)
Google Scholar
Chvatál, V.: A Greedy Heuristic for the Set-Covering Problem. Mathematics of Operations Research 4(3), 233–235 (1979)
MathSciNet
MATH
CrossRef
Google Scholar
Dahlhaus, E., Seymour, P.D., Papadimitriou, C.H., Yannakakis, M.: The complexity of multiterminal cuts. SIAM J. Computing 23, 864–894 (1994)
MathSciNet
MATH
CrossRef
Google Scholar
Dolgui, A., Sotskov, Y.N., Werner, F.: Mixed graph coloring via unit-time job-shop. Internat. J. Math. Algorithms 2, 289–323 (2001)
MATH
Google Scholar
Feige, U.: A threshold of ln
n for approximating set cover. Journal of the ACM 45(4), 634–652 (1998)
MathSciNet
MATH
CrossRef
Google Scholar
Fellows, M., Hermelin, D., Rosamond, F.A., Vialette, S.: On the parametrized complexity of multiple-interval graph problems. Theoretical Computer Science 410(1), 53–61 (2009)
MathSciNet
MATH
CrossRef
Google Scholar
Feremans, C., Labbe, M., Laporte, G.: Generalized network design problems. European Journal of Operations Research 148, 1–13 (2003)
MathSciNet
MATH
CrossRef
Google Scholar
Gamache, M., Hertz, A., Ouellet, J.: A graph coloring model for a feasibility problem in crew scheduling. Computers and Operations Research 34, 2384–2395 (2007)
MATH
CrossRef
Google Scholar
Garey, M.R., Johnson, D.S.: Computers and intractability, a guide to the theory of \(\mathcal{NP}\)-completeness. Freeman, New York (1979)
Google Scholar
Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified \(\mathcal{NP}\)-complete problems. In: Proceedings of the Sixth Annual ACM Symposium on Theory of Computing, pp. 47–63 (1974)
Google Scholar
Giaro, K., Kubale, M., Obszarski, P.: A graph coloring approach to scheduling of multiprocessor tasks on dedicated machines with availability constraints. Discrete Applied Mathematics 157(17), 3625–3630 (2009)
MathSciNet
MATH
CrossRef
Google Scholar
Korte, B., Vygen, J.: Combinatorial Optimization, Theory and Algorithms, 4th edn. Springer (2008)
Google Scholar
McGrae, A.R.A., Zito, M.: Empires Make Cartography Hard: The Complexity of the Empire Colouring Problem. In: Kolman, P., Kratochvíl, J. (eds.) WG 2011. LNCS, vol. 6986, pp. 179–190. Springer, Heidelberg (2011)
CrossRef
Google Scholar
Ries, B.: Complexity of two coloring problems in cubic planar bipartite mixed graphs. Discrete Applied Mathematics 158, 592–596 (2010)
MathSciNet
MATH
CrossRef
Google Scholar
Safra, S., Schwartz, O.: On the complexity of approximating TSP with neighborhoods and related problems. Computational Complexity 14, 281–307 (2005)
MathSciNet
MATH
CrossRef
Google Scholar
Sotskov, Y.N., Tanaev, V.S., Werner, F.: Scheduling problems and mixed graph colorings. Optimization 51, 597–624 (2002)
MathSciNet
MATH
CrossRef
Google Scholar
Tovey, C.A.: A simplified \(\mathcal{NP}\)-complete satisfiability problem. Discrete Applied Mathematics 8, 85–89 (1984)
MathSciNet
MATH
CrossRef
Google Scholar
West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice Hall (2001)
Google Scholar