Skip to main content

Selective Graph Coloring in Some Special Classes of Graphs

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 7422)

Abstract

In this paper, we consider the selective graph coloring problem. Given an integer k ≥ 1 and a graph G = (V,E) with a partition V 1,…,V p of V, it consists in deciding whether there exists a set V * in G such that |V * ∩ V i | = 1 for all i ∈ {1,…,p}, and such that the graph induced by V * is k-colorable. We investigate the complexity status of this problem in various classes of graphs.

Keywords

  • computational complexity
  • scheduling
  • bipartite graphs
  • split graphs
  • complete q-partite graphs

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-32147-4_29
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-32147-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   74.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice Hall (1993)

    Google Scholar 

  2. Al-Mouhamed, M., Dandashi, A.: Graph Coloring for class scheduling. In: IEEE/ACS Internation Conference on Computer Systems and Applications (AICCSA), pp. 1–4 (2010)

    Google Scholar 

  3. Berge, C.: Graphes et hypergraphes. Dunod, Paris (1970)

    MATH  Google Scholar 

  4. Chung, Y., Demange, M.: On inverse chromatic number problems. Electronic Notes in Discrete Mathematics 36, 1129–1136 (2010)

    CrossRef  Google Scholar 

  5. Berman, P., Karpinski, M., Scott, A.D.: Approximation Hardness of Short Symmetric Instances of MAX-3SAT. Electronic Colloquium on Computational Complexity. Technical Report TR03-049 (2003)

    Google Scholar 

  6. Chvatál, V.: A Greedy Heuristic for the Set-Covering Problem. Mathematics of Operations Research 4(3), 233–235 (1979)

    MathSciNet  MATH  CrossRef  Google Scholar 

  7. Dahlhaus, E., Seymour, P.D., Papadimitriou, C.H., Yannakakis, M.: The complexity of multiterminal cuts. SIAM J. Computing 23, 864–894 (1994)

    MathSciNet  MATH  CrossRef  Google Scholar 

  8. Dolgui, A., Sotskov, Y.N., Werner, F.: Mixed graph coloring via unit-time job-shop. Internat. J. Math. Algorithms 2, 289–323 (2001)

    MATH  Google Scholar 

  9. Feige, U.: A threshold of ln n for approximating set cover. Journal of the ACM 45(4), 634–652 (1998)

    MathSciNet  MATH  CrossRef  Google Scholar 

  10. Fellows, M., Hermelin, D., Rosamond, F.A., Vialette, S.: On the parametrized complexity of multiple-interval graph problems. Theoretical Computer Science 410(1), 53–61 (2009)

    MathSciNet  MATH  CrossRef  Google Scholar 

  11. Feremans, C., Labbe, M., Laporte, G.: Generalized network design problems. European Journal of Operations Research 148, 1–13 (2003)

    MathSciNet  MATH  CrossRef  Google Scholar 

  12. Gamache, M., Hertz, A., Ouellet, J.: A graph coloring model for a feasibility problem in crew scheduling. Computers and Operations Research 34, 2384–2395 (2007)

    MATH  CrossRef  Google Scholar 

  13. Garey, M.R., Johnson, D.S.: Computers and intractability, a guide to the theory of \(\mathcal{NP}\)-completeness. Freeman, New York (1979)

    Google Scholar 

  14. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified \(\mathcal{NP}\)-complete problems. In: Proceedings of the Sixth Annual ACM Symposium on Theory of Computing, pp. 47–63 (1974)

    Google Scholar 

  15. Giaro, K., Kubale, M., Obszarski, P.: A graph coloring approach to scheduling of multiprocessor tasks on dedicated machines with availability constraints. Discrete Applied Mathematics 157(17), 3625–3630 (2009)

    MathSciNet  MATH  CrossRef  Google Scholar 

  16. Korte, B., Vygen, J.: Combinatorial Optimization, Theory and Algorithms, 4th edn. Springer (2008)

    Google Scholar 

  17. McGrae, A.R.A., Zito, M.: Empires Make Cartography Hard: The Complexity of the Empire Colouring Problem. In: Kolman, P., Kratochvíl, J. (eds.) WG 2011. LNCS, vol. 6986, pp. 179–190. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  18. Ries, B.: Complexity of two coloring problems in cubic planar bipartite mixed graphs. Discrete Applied Mathematics 158, 592–596 (2010)

    MathSciNet  MATH  CrossRef  Google Scholar 

  19. Safra, S., Schwartz, O.: On the complexity of approximating TSP with neighborhoods and related problems. Computational Complexity 14, 281–307 (2005)

    MathSciNet  MATH  CrossRef  Google Scholar 

  20. Sotskov, Y.N., Tanaev, V.S., Werner, F.: Scheduling problems and mixed graph colorings. Optimization 51, 597–624 (2002)

    MathSciNet  MATH  CrossRef  Google Scholar 

  21. Tovey, C.A.: A simplified \(\mathcal{NP}\)-complete satisfiability problem. Discrete Applied Mathematics 8, 85–89 (1984)

    MathSciNet  MATH  CrossRef  Google Scholar 

  22. West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice Hall (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Demange, M., Monnot, J., Pop, P., Ries, B. (2012). Selective Graph Coloring in Some Special Classes of Graphs. In: Mahjoub, A.R., Markakis, V., Milis, I., Paschos, V.T. (eds) Combinatorial Optimization. ISCO 2012. Lecture Notes in Computer Science, vol 7422. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32147-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32147-4_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32146-7

  • Online ISBN: 978-3-642-32147-4

  • eBook Packages: Computer ScienceComputer Science (R0)