Skip to main content

Future Gravity Field Satellite Missions

  • Chapter
  • First Online:

Part of the book series: Advanced Technologies in Earth Sciences ((ATES))

Abstract

The project “Future Gravity Field Satellite Missions” (FGM) was a logical consequence of two previous phases in Theme 2 “Observation of the System Earth from Space” in the BMBF/DFG (Federal Ministry of Education and Research/German Research Foundation) Research and Development Programme GEOTECHNOLOGIEN.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Note that even though the FGM orbits are still far from the air-drag environment of the feasible GOCE orbit (\(\sim \)270 km altitude), GOCE is designed for a baseline lifetime of 18 month only which would be incompliant with the envisaged mission requirements, i.e. insufficient for the purpose of long-term monitoring of the gravity field for at least five years.

  2. 2.

    The one way Doppler shift is given by \(\Delta \) f \(=\) v/ \(\lambda \) where v is satellites’ relative velocity and \(\lambda \) the laser wavelength. Current photodetector/phasemeter prototypes have a bandwidth of 20 MHz with beatnote frequencies around 1–20 MHz (e.g. Bykov et al. 2009). In an offset-locked transponder configuration the beatnote frequency at the main S/C is twice the one-way Doppler shift plus the offset introduced by the transponder. If \(\Delta \) f \(=\) 9.5 MHz an offset of 1 MHz implies a 20 MHz beatnote, if \(\Delta \) f \(=\) \(-\)9.5 MHz an offset of 20 MHz gives a beatnote frequency of 1 MHz at the main S/C. For (a typical) \(\lambda = 1064\) nm the tolerable relative velocity then results to \(\pm \)10 m/s.

  3. 3.

    LISA Technology Package Data Analysis (LTPDA) is a MATLAB toolbox being implemented in the framework of the LISA gravitational wave detection mission. Further information as well as the toolbox itself—downloadable for free—is available via www.lisa.aei-hannover.de/ltpda.

  4. 4.

    Note that the peaks at once and twice the orbital frequency in the coupling with pointing noise (dash-dotted line) exceed the internal noise level by far as well and originate from cyclo-stationary noise. However, this contribution is hardly affected by the CoM offset and according to QLT analysis the noise power does not significantly degrade the science performance.

  5. 5.

    At first glance the contributions of the apparent accelerations (i.e. the angular velocities and accelerations coupling with the CoM offset) may seem uncovered by the SST distance metrology. However, the metrology phase center is subject to the same extent to the S/C rotation (in terms of pointing with its respective lever arm to the S/C CoM), i.e. the contribution is implicitly covered. For this reason treating metrology and accelerometer budgets as fully uncorrelated leads to conservative results as there is in fact a certain degree of correlation.

References

  • Anselmi A, Visser PNAM, van Dam T, Sneeuw N, Gruber T, Altès B, Christophe B, Cossu F, Ditmar PG, Murböck M, Parisch M, Renard M, Reubelt T, Sechi G, Texieira da Encarnacao JG (2011) Assessment of a Next Generation Gravity Mission to monitor the variations of Earth’s gravity field, ESA-contract No. 22643/09/NL/AF, Executive summary, Thales Alenia Space report SD-RP-AI-0721, 2011.

    Google Scholar 

  • Bendat JS, Piersol AG (2000) Random data analysis and measurement procedures, 3rd edn. Wiley, NewYork

    Google Scholar 

  • Bender PL, Wiese DN, Nerem RS (2008) A possible dual-GRACE mission with 90 degree and 63 degree inclination orbits. ESA (ed) Proceedings of the third international symposium on formation flying, missions and technologies, 23–25 April 2008. ESA/ESTEC, Noordwijk, pp 1–6

    Google Scholar 

  • Bettadpur S (2007) GRACE 327–720, Gravity recovery and climate experiment, product specification document. Rev. 4.5, CSR-GR-03-02, ftp://podaac.jpl.nasa.gov/allData/grace/docs/ProdSpecDoc_v4.5.pdf, last accessed 24 September 2012.

  • Bortoluzzi D, Hoyle CD, Hueller M, Vitale S, Heinzel G, Danzmann K, Lobo A, Anza S, Navau C, Chen DX, Sanchez A, Araujo H, Wass P, Grimani C (2005) Science requirements and top-level architecture definition for the Lisa Technology Package (LTP) on Board LISA Pathfinder (SMART-2). LTPA-UTN-ScRD-Iss003-Rev1, Project Documentation, available on ESA website, http://www.rssd.esa.int/SP/LISAPATHFINDER/docs/Top_level_documents/LPF_ScRD.pdf, last accessed on 24 September 2012

  • Bowman BR, Tobiska WK, Marcos FA, Valladares C (2008) The JB2006 empirical thermospheric density model. J Atmos Sol Terr Phys 70(5):774–793. doi:10.1016/j.jastp.2007.10.002

    Article  Google Scholar 

  • Bykov I, Delgado JJE, Garcia AF, Marin AFG, Heinzel G, Danzmann K (2009) LISA phasemeter development: Advanced prototyping. J Phys Conf Ser 154:012017. doi:10.1088/1742/154/1/012017

    Article  Google Scholar 

  • Christophe B, Marque J-P, Foulon B (2010) Accelerometers for the ESA GOCE Mission: one year of in-orbit results. Presentation at EGU 2010, Vienna, available on the ESA GOCE website, http://earth.esa.int/pub/ESA_DOC/GOCE/AccelerometersfortheESAGOCEMission-oneyearofin-orbitresults.pdf, Last accessed 24 September 2012

  • Coddington I, Swann WC, Nenadovic L (2009) Newbury NR (2009) Rapid and precise absolute distance measurements at long range. Nat Photonics 3:351–356

    Article  Google Scholar 

  • Cui M, Zeitouny M, Bhattacharya N, van den Berg S, Urbach H, Braat J (2009) High-accuracy long-distance measurements in air with a frequency comb laser. Opt Lett 34:1982–1984

    Article  Google Scholar 

  • Di Cara D, Massotti L, Cesare S, Musso F, Castorina G, Feili D, Lotz B (2011) Performance verification of the NRIT-2.5 thruster on the Nanobalance facility, IEPC-2011-013. In: Presented at the 32nd international electric propulsion conference, Wiesbaden.

    Google Scholar 

  • van Dam T, Visser P, Sneeuw N, Losch M, Gruber T, Bamber J, Bierkens M, King M, Smit M (2008) Monitoring and modelling individual sources of mass distribution and transport in the earth system by means of satellites ESA-contract 20403, Final Report.

    Google Scholar 

  • Ellmer M (2011) Optimization of the orbit parameters of future gravity missions using genetic algorithms, MSc thesis, Geodetic Institute, University of Stuttgart, http://elib.uni-stuttgart.de/opus/volltexte/2012/7122/pdf/Ellmer.pdf

  • Elsaka B, Kusche J (2010) Optimized gravity field determination from future satellite missions. In: Münch U, Dransch W (eds) Observation of the System Earth from Space, GEOTECHNOLOGIEN Science Report No. 17, Status Seminar, 4 (October 2010) Rheinische Friedrich Wilhelms Universität Bonn. Koordinierungsbüro GEOTECHNOLOGIEN, Potsdam

    Google Scholar 

  • Elsaka B, Kusche J, Ilk KH (2012) Recovery of the Earth’s gravity field from formation-flying satellites: temporal aliasing issues. Adv Space Res, http://dx.doi.org/10.1016/j.asr.2012.07.016

  • ESA (1999) The four candidate earth explorer core missions–gravity field and steady-state ocean circulation mission. ESA SP-1233.

    Google Scholar 

  • Finlay CC, Maus S, Beggan CD, Bondar TN, Chambodut A, Chernova TA, Chulliat A, Golovkov VP, Hamilton B, Hamoudi H, Holme R, Hulot G, Kuang W, Langlais B, Lesur V, Lowes FJ, Lühr H, Macmillan S, Mandea M, McLean S, Manoj C, Menvielle M, Michaelis I, Olsen N, Rauberg J, Rother M, Sabaka TJ, Tangborn A, Tøffner-Clausen L, Thébault E, Thomson AWP, Wardinski I, Wei Z, Zvereva TI (2010) International Geomagnetic Reference Field: the eleventh generation. Geophys J Int 183(3):1216–1230. doi:10.1111/j.1365-246X.2010.04804.x

    Article  Google Scholar 

  • Foerste C, Schmidt R, Stubenvoll R, Flechtner F, Meyer U, Koenig R, Neumayer H, Biancale R, Lemoine JM, Bruinsma S, Loyer S, Barthelmes F, Esselborn S (2008) The GeoForschungsZentrum Potsdam/Groupe de Recherche de Geodesie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C. J Geod 82(6):331–346. doi:10.1007/s00190-007-0183-8

    Article  Google Scholar 

  • Geiger R, Ménoret V, Stern G, Zahzam N, Cheinet P, Battelier B, Villing A, Moron F, Lours M, Bidel Y, Bresson A, Landragin A, Bouyer P (2011) Detecting inertial effects with airborne matter-wave interferometry. Nat Comm 2(2011):474. doi:10.1038/ncomms1479

    Article  Google Scholar 

  • van Gelderen M, Koop R (1997) The use of degree variances in satellite gradiometry. J Geod 71:337–343

    Article  Google Scholar 

  • Gruber T, Bamber JL, Bierkens MFP, Dobslaw H, Murböck M, Thomas M, van Beek LPH, van Dam T, Vermeersen LLA, Visser PNAM (2011) Simulation of the time-variable gravity field by means of coupled geophysical models. Earth Syst Sci Data 3:19–35. doi:10.5194/essd-3-19-2011

    Article  Google Scholar 

  • Haboucha A, Zhang W, Li T, Lours M, Luiten AN, Coq L, Santarelli G (2011) Optical-fiber pulse rate multiplier for ultralow phase-noise signal generation. Opt Lett 36:3654–3656

    Article  Google Scholar 

  • Hedin A (1987) MSIS-86 thermospheric model. JGR 92(A5):4649–4662. doi: 10.1029/JA092iA05p04649.

  • Heinzel G, Wand V, García A, Jennrich O, Braxmaier C, Robertson D, Middleton K, Hoyland D, Rüdiger A, Schilling R, Johann U, Danzmann K (2004) The LTP interferometer and phasemeter. Class Quantum Gravity 21:S581–S587

    Article  Google Scholar 

  • Iafolla V, Fiorenza E, Lefevre C, Nozolli S, Peron R, Reale A, Santoli F (2011) The ISA accelerometer for BepiColombo mission. Mem SA It Suppl 16:22

    Google Scholar 

  • Iran Pour S, Reubelt T, Sneeuw N (2013) Quality assessment of sub-Nyquist recovery from future gravity satellite missions. Adv Space Res. doi:http://dx.doi.org/10.1016/j.asr

  • Knocke PC, Ries JC, Tapley BD (1988) Earth radiation pressure effects on satellites. Proceedings of the AIAA/AAS astrodynamics specialist conference, Washington, In, pp 577–586

    Google Scholar 

  • Kusche J (2002) A Monte-Carlo technique for weight estimation in satellite geodesy. J Geod 76(11):641–652

    Google Scholar 

  • Lemoine FG, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK, Cox CM, Klosko SM, Luthcke SB, Torrence MH, Wang YM, Williamson RG, Pavlis EC, Rapp RH and Olson TR (1998) The Development of the Joint NASA GSFC and the National Imagery and Mappping Agency (NIMA) Geopotential Model EGM96. NASA/TP-1998-206861, July, 1998.

    Google Scholar 

  • Marque JP, Christophe B, Liorzou F, Bodovillé G, Foulon B, Guérard J, Lebat V (2008) The ultra sensitive accelerometers of the ESA GOCE mission. In: 59th international astronautical congress, IAC-08-B1.3.7.

    Google Scholar 

  • Matticari G, Materassi M, Noci G, Fallerini L, Siciliano P (2011) Use of a “wide dynamic range” electronic flow regulator to increase the flexibility and versatility of electric and cold gas small propulsion systems. In: IEPC-2011-096. Presented at the 32nd international electric propulsion conference, Wiesbaden.

    Google Scholar 

  • Mayer-Gürr T (2006) Gravitationsfeldbestimmung aus der Analyse kurzer Bahnbögen am Beispiel der Satellitenmissionen CHAMP und GRACE. Dissertation, Schriftenreihe des Instituts für Geodäsie und Geoinformation der Rheinischen Friedrich-Wilhelms Universität Bonn, ISSN 1864–1113, Nr. 8, Bonn 2008.

    Google Scholar 

  • Milani A, Gronchi G (2010) Theory of orbit determination. Cambridge University Press, Cambridge

    Google Scholar 

  • Montenbruck O, Gill E (2001) Satellite orbits: models, methods, applications. 1st edition, corr. 2nd printing, Springer, Berlin.

    Google Scholar 

  • Montenbruck O, Gill E (2001) Satellite orbits: models, methods, applications. 1st edn, corr. 2nd printing, Springer, Berlin.

    Google Scholar 

  • Panet I, Flury J, Biancale R, Gruber T, Johannessen J, van den Broeke MR, van Dam T, Gegout P, Hughes C, Ramillien G, Sasgen I, Seoane L, Thomas M (2012) Earth system mass transport mission (e.motion): a concept for future earth gravity field measurements from space. Surveys in Geophysics, vol 2012, Springer. doi: 10.1007/s10712-012-9209-8.

  • Percival DB (2006) Spectral analysis of clock noise: a primer. Metrologia 43:S299. doi:10.1088/0026-1394/43/4/S18

    Article  Google Scholar 

  • Peters A, Chung KY, Chu S (1999) Measurement of gravitational acceleration by dropping atoms. Nature 400(1999):849–852. doi:10.1038/23655

    Google Scholar 

  • Ray R (2008) GOT4.7 (private communication). Extension of Ray R (1999) A global ocean tide model from Topex/Poseidon altimetry GOT99.2. NASA Tech Memo 209478, Sept. 1999.

    Google Scholar 

  • Reigber C, Lühr H, Schwintzer P (2002) CHAMP mission status. Adv Space Res 30:129–134

    Article  Google Scholar 

  • Reubelt T, Sneeuw N, Iran-Pour S (2011) Quick-look gravity field analysis of formation scenarios selection. In: Münch U, Dransch W (eds) Observation of the system earth from space, GEOTECHNOLOGIEN Science Report No. 17, Status Seminar, 4 (October 2010) Rheinische Friedrich Wilhelms Universität Bonn. Koordinierungsbüro GEOTECHNOLOGIEN, Potsdam

    Google Scholar 

  • Reubelt T, Sneeuw N, Sharifi MA (2010) Future mission design options for spatio-temporal geopotential recovery. In: Mertikas SP (ed) Gravity, geoid and earth observation. IAG Commission 2: Gravity Field, Chania, Crete, Greece, pp 23–27 June 2008. International association of geodesy symposia, vol 135, Springer.

    Google Scholar 

  • Savcenko R, Bosch W (2008) EOT08a–empirical ocean tide model from multi-mission satellite altimetry. Report No. 81, Deutsches Geodätisches Forschungsinstitut (DGFI), München.

    Google Scholar 

  • Schatten K, Myers DJ, Sofia S (1996) Solar activity forecast for solar cycle 23. Geophys Res Lett 23(6):605–608

    Article  Google Scholar 

  • Schrama EJO, Wouters B, Lavallee DD (2007) Signal and noise in Gravity Recovery and Climate Experiment (GRACE) observed surface mass observations. J Geo-phys Res 112:(B08407). doi: 10.1029/2006JB004882.

  • Schuldt T, Gohlke M, Weise D, Johann U, Peters A, Braxmaier C (2009) Picometer and nanoradian optical heterodyne interferometry for translation and tilt metrology of the LISA gravitational reference sensor. Class Quantum Gravity 26:085008

    Article  Google Scholar 

  • Sharifi M, Sneeuw N, Keller W (2007) Gravity recovery capability of four generic satellite formations, In: Kilicoglu A, Forsberg R (eds) Gravity field of the earth, general command of mapping, ISSN 1300–5790 . Spec Issue 18:211–216

    Google Scholar 

  • Sheard BS, Heinzel G, Danzmann K, Shaddock DA, Klipstein WM, Folkner WM (2012) Intersatellite laser ranging instrument for the GRACE follow-on mission. J Geod 29: doi:10.1007/s00190-012-0566-3

  • Sneeuw N (2000) A semi-analytical approach to gravity field analysis from satellite observations, DGK, Reihe C, Heft 527, Verlag der Bayerischen Akademie der Wissenschaften, ISBN (Print) 3-7696-9566-6, ISSN 0065-5325, 2000.

    Google Scholar 

  • Standish EM (1998) JPL Planetary and Lunar Ephemerides, “DE405/LE405”. IOM 312.F-98-048, August 26 1998.

    Google Scholar 

  • Stockton JK, Takase K, Kasevich MA (2011) Absolute geodetic rotation measurement using atom interferometry. Phys Rev Lett 107(2011):133001. doi:10.1103/PhysRevLett.107.133001

    Article  Google Scholar 

  • Szerdahelyi L, Fichter W, Schleicher A, Johann U (2003) HYPER Secondary AOCS Performance. HYP-2-01 v4.1, Technical Note, available on ESA website http://sci2.esa.int/hyper/docs/HYP-2-01-v41.pdf, last accessed 24 September 2012

  • Tackmann G, Berg P, Schubert C, Abend S, Gilowski M, Ertmer W, Rasel EM (2012) Self-alignment of a compact large-area atomic Sagnac interferometer. New J Phys 14(2012):015002. doi:10.1088/1367-2630/14/1/015002

    Article  Google Scholar 

  • Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) GRACE measurements of mass variability in the Earth system. Science 305:503–505. http://dx.doi.org/10.1126/science.1099192

    Google Scholar 

  • Tapley BD, Watkins MM, Riess JC et al (1996) The joint gravity model 3. JGR 101:28029–28049

    Article  Google Scholar 

  • Touboul B (2001) Space accelerometers: present status. Lecture notes in physics, vol. 562/2001, pp 273–291, Springer. doi: 10.1007/3-540-40988-2_13.

  • Troebs M, Heinzel G (2006) Improved spectrum estimation from digitized time series on a logarithmic frequency axis. Measurement 39:120–129. doi: 10.1016/j.measurement.2005.10.010, see also the Corrigendum at doi:10.1016/j.measurement.2008.04.004

    Article  Google Scholar 

  • Udem T, Holzwarth R, Hänsch TW (2002) Optical Frequency Metrology. Nature 416:233

    Article  Google Scholar 

  • Visser PNAM, Sneeuw N, Reubelt T, Losch M, van Dam T (2010) Spaceborne gravimetric satellite constellations and ocean tides: aliasing effects. Geophys J Int 181:789–805

    Google Scholar 

  • Wagner C, McAdoo D, Klokočník J, Kostelecký J (2006) Degradation of geopotential recovery from short repeat-cycle orbits: application to GRACE monthly fields. J Geod 80(2):94–103

    Article  Google Scholar 

  • Welch PD (1967) The use of fast fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust 15(2):7073

    Article  Google Scholar 

  • Wiese DN, Folkner WM, Nerem RS (2009) Alternative mission architectures for a gravity recovery satellite mission. J Geod 83:569–581. doi:10.1007/s00190-008-0274-1

    Article  Google Scholar 

  • Wiese DN, Nerem RS, Lemoine FG (2011) Design considerations for a dedicated gravity recovery satellite mission consisting of two pairs of satellites. J Geod 86:81–98. doi:10.1007/s00190-011-0493-8

    Article  Google Scholar 

  • Willemenot E, Touboul B (1999) On-ground investigations of space accelerometers noise with an electrostatic torsion pendulum. Rev Sci Instrum 71:302. doi:10.1063/1.1150197

    Article  Google Scholar 

  • Ye J (2004) Absolut measurement of a long, arbitrary distance to less than an optical fringe. Opt Lett 29(10):1153–1155

    Article  Google Scholar 

  • van Zoest T, Gaaloul N, Singh Y, Ahlers H, Herr W, Seidel ST, Ertmer W, Rasel E, Eckart M, Kajari E, Arnold S, Nandi G, Schleich WP, Walser R, Vogel A, Sengstock K, Bongs K, Lewoczko-Adamczyk W, Schiemangk M, Schuldt T, Peters A, Könemann T, Müntinga H, Lämmerzahl C, Dittus H, Steinmetz T, Hänsch TW, Reichel J (2010) Bose-Einstein condensation in microgravity. Science 328:1540–1543. doi:10.1126/science.1189164

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tilo Reubelt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reubelt, T. et al. (2014). Future Gravity Field Satellite Missions. In: Flechtner, F., Sneeuw, N., Schuh, WD. (eds) Observation of the System Earth from Space - CHAMP, GRACE, GOCE and future missions. Advanced Technologies in Earth Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32135-1_21

Download citation

Publish with us

Policies and ethics