Advertisement

Algorithms of ASP for Not Exactly Known Parameters

  • Larysa Titarenko
  • Alexander Barkalov
Part of the Signals and Communication Technology book series (SCT)

Abstract

The chapter is devoted to usage of proposed methods of the ASSP theory on the case of adaptive spatial partitioning (ASP) of signals with unknown structure. The solution is obtained for the ASP task which is optimal for criterion of maximum signal multiplication under the maximum possible suppression of interferences. The minimax approach is developed for constructing operators. The convergent recurrent algorithms are synthesised for implementing solutions obtained with usage of operators. These robust ASP algorithms are optimal for criteria of maximum for power of useful signal respectively to summarized power of interferences and noise, as well as for minimum power of output signal under constraints. The simple non-parametric algorithm is proposed for the very important practical case of two-element antenna array. It provides partitioning for two independent no-Gaussian signals in the conditions of uncertainty about directions of signal arriving, distance between antennas and their directivity characteristics. The results of simulation are represented for quality analysis of proposed algorithms.

Keywords

Input Signal Antenna Array Directivity Characteristic Antenna Element Proper Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mansour, A., Jutten, C.: A direct solution for blind separation of sources. IEEE Trans. Signal Processing 44 (1996)Google Scholar
  2. 2.
    Weiss, A.J., Friedlander, B.: “almost blind” steering vector estimation using second-order moments. IEEE Trans. Signal Processing 44 (1996)Google Scholar
  3. 3.
    Weiss, A.J., Friedlander, B.: Array processing using joint diagonalization. Signal Processing 50 (1996)Google Scholar
  4. 4.
    Malachov, A.N.: Cumulant analysis of random non-Gaussian processes and their transformations. Sovetskoje Radio, M. (1978) (in Russian) Google Scholar
  5. 5.
    Porat, B., Friedlander, B.: Direction finding algorithms based on high-order statistics. IEEE Trans. Signal Processing 39(9), 2016–2024 (1991)zbMATHCrossRefGoogle Scholar
  6. 6.
    Bertsekas, D.: Constrained Optimization and Lagrange Multiplier Methods. Academic, N.Y (1982)zbMATHGoogle Scholar
  7. 7.
    Puntonet, C.G., Prieto, A., Jutten, C.: Separation of sources: A geometry - based procedure for reconstruction of n-valued signals. Signal Processing 46 (1995)Google Scholar
  8. 8.
    Lechmann, E., Castella, G.: Theory of point estimation. Springer, Berlin (1998)Google Scholar
  9. 9.
    Vasiljev, F.P.: Solution methods for extremal tasks. Nauka, M. (1981) (in Russian)Google Scholar
  10. 10.
    Cox, H., Zeskind, R.M., Owen, M.M.: Robust adaptive beamforming. IEEE Trans. Acoustics, Speech, and Signal Processing ASSP-35(10), 1365–1375 (1987)CrossRefGoogle Scholar
  11. 11.
    Van Trees, H.: Detection, estimation and modulation theory (Part 1). John Wiley & Sons, N.J. (2001)CrossRefGoogle Scholar
  12. 12.
    Van Der Veen, A.J., Paulraj, A.: An analytical constant modulus algorithm. IEEE Trans. Signal Processing 44(5), 1136–1155 (1996)CrossRefGoogle Scholar
  13. 13.
    Wilkinson, J.: The algebraic eigenvalue problem. Clarendon Press, N.J. (1988)zbMATHGoogle Scholar
  14. 14.
    Titarenko, L.: Signal processing for adaptive antenna arrays. University of Zielona Gora Press, Zielona Gora (2011)zbMATHGoogle Scholar
  15. 15.
    Marchuk, L.A., Efimov, A.A., Titarenko, L.A.: Synthesis of algorithms with feed-back for adaptive spatial partitioning of signal and interferences. Radiotechnika (107), 68–71 (1988)Google Scholar
  16. 16.
    Marchuk, L.A., Saveljev, A.N., Titarenko, L.A.: A method of adaptive antenna array design for coherent signal and interferences. In: Proc. IEEE Int. Symp. of Antennas and Propag. Soc., vol. 3, pp. 1616–1619 (1999)Google Scholar
  17. 17.
    Marchuk, L.A., Glushankov, E.I., Kolinko, A.V.: A new approach to robust adaptive array design. In: Proc. International Symposium on Electromagnetic Compability, Rome, Italy, pp. 1245–1252 (1996)Google Scholar
  18. 18.
    Marchuk, L.A., Nochrin, O.A., Saveljev, A.N., Titarenko, L.A.: A robust adaptive antenna array for signal separation. In: Proc. of 3rd Int. Conf. on Antenna Theory and Techniques, Sevastopil, pp. 290–292 (1999)Google Scholar
  19. 19.
    Titarenko, L.A.: Method of robust algorithm synthesis for separation signals and interference in adaptive antenna arrays. Radiotechnika (120), 64–66 (2001)Google Scholar
  20. 20.
    Titarenko, L.A.: Algorithm of spatial signal partitioning for small-element antenna arrays. Informatics, Electronics, Communications (47), 111–121 (2003)Google Scholar
  21. 21.
    Bazaraa, M., Searaly, H., Shetty, C.: Nonlinear programming. Theory and algorithms. John Wiley & Sons, N.Y. (2006)zbMATHCrossRefGoogle Scholar
  22. 22.
    Parlett, B.N.: The Symmetric Eigenvalue Problem. Prentice Hall, Englewood Cliffs (1980)zbMATHGoogle Scholar
  23. 23.
    Bellman, R.: Introduction to matrix analysis. McGraw Hill, N.Y. (1970)zbMATHGoogle Scholar
  24. 24.
    Horn, R., Johnson, T.: Topics in matrix analysis. Cambridge University Press, Cambridge (1994)zbMATHGoogle Scholar
  25. 25.
    Pertcov, S.V.: Cellular networks and communication networks with moving objects. Radiotechnika (108), 162–166 (1998)Google Scholar
  26. 26.
    Tichonov, V.I., Kulman, N.K.: Nonlinear filtration and quasi-coherent signal receiving. Sovetskoje Radio, M. (1975) (in Russian)Google Scholar
  27. 27.
    Inouye, Y., Hiramo, K.: Cumulant - based blind identification of linear multi-input - multi-output systems driven by colored inputs. IEEE Trans. Signal Processing 45(6), 1543–1552 (1997)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of Informatics and ElectronicsUniversity of Zielona GoraZielona GoraPoland

Personalised recommendations