Advertisement

Financial Application as a Software Service on Cloud

  • Saurabh Kumar Garg
  • Bhanu Sharma
  • Rodrigos N. Calheiros
  • Ruppa K. Thulasiram
  • Parimala Thulasiraman
  • Rajkumar Buyya
Part of the Communications in Computer and Information Science book series (CCIS, volume 306)

Abstract

In this work, we propose a SaaS model that provides service to ordinary investors, unfamiliar with finance models, to evaluate the price of an option that is currently being traded before taking a decision to enter into a contract. In this model, investors may approach a financial Cloud Service Provider (CSP) to compute the option price with time and/or accuracy constraints. The option pricing algorithms are not only computationally intensive but also communication intensive. Therefore, one of the key components of the methodology presented in this paper is the topology-aware communication between tasks and scheduling of tasks in virtual machines with the goal of reducing the latency of communication between tasks. We perform various experiments to evaluate how our model can map the tasks efficiently to reduce communication latency, hide network latency ensuring that all virtual machines are busy increasing response time of users.

Keywords

Virtual Machine Arrival Rate Option Price Cloud Service Provider Data Center Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al-Fares, M., Loukissas, A., Vahdat, A.: A scalable, commodity data center network architecture. SIGCOMM Computer Communication Review 38(4), 63–74 (2008)CrossRefGoogle Scholar
  2. 2.
    Barua, S., Thulasiram, R.K., Thulasiraman, P.: High Performance Computing for a Financial Application Using Fast Fourier Transform. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648, pp. 1246–1253. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Boyle, P.: Options: A Monte Carlo approach. J. of Finan. Econ. 4, 223–238 (1977)Google Scholar
  4. 4.
    Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F., Buyya, R.: CloudSim: A toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Software: Practice and Experience 41(1), 23–50 (2011)Google Scholar
  5. 5.
    Carr, P., Madan, D.B.: Option valuation using the fast Fourier transform. The Journal of Computational Finance 2(4), 61–73 (1999)Google Scholar
  6. 6.
    Coti, C., Herault, T., Cappello, F.: MPI Applications on Grids: A Topology Aware Approach. In: Sips, H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 466–477. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Cox, J.C., Ross, S.A., Rubinstein, M.: Options pricing: A simplified approach. Journal of Financial Economics 7, 229–263 (1979)CrossRefzbMATHGoogle Scholar
  8. 8.
    Hull, J.: Options, Futures, and other Derivative Securities. Prentice-Hall (May 2008)Google Scholar
  9. 9.
    Kandalla, K., Subramoni, H., Vishnu, A., Panda, D.: Designing topology-aware collective communication algorithms for large scale InfiniBand clusters: Case studies with scatter and gather. In: 10th Workshop on Comm. Arch. for Clusters (CAC 2010), Atlanta, USA (April 2010)Google Scholar
  10. 10.
    Lee, G., Tolia, N., Ranganathan, P., Katz, R.H.: Topology-aware resource allocation for data-intensive workloads. SIGCOMM Comp. Comm. Review 41, 120–124 (2011)CrossRefGoogle Scholar
  11. 11.
    Sharma, B., Thulasiram, R.K., Thulasiraman, P.: Option pricing: A mosaic of experiments and results (Technical Memo CFD058-W10, Computational Financial Derivatives Lab, Department of Computer Science, University of Manitoba (2010), http://www.cs.umanitoba.ca/~tulsi
  12. 12.
    Solomon, S., Thulasiraman, R.K., Thulasiraman, P.: Option pricing on the gpu. In: The 12th IEEE Int. Conf. on High Perf. Comp. and Comm., Melbourne, Australia (2010)Google Scholar
  13. 13.
    Thulasiram, R.K., Litov, L., Nojumi, H., Downing, C., Gao, G.: Multithreaded algorithms for pricing a class of complex options. In: Proceedings (CD-RoM) of the IEEE/ACM International Parallel and Distribued Processing Symposium (IPDPS), San Francisco, CA (2001)Google Scholar
  14. 14.
    Thulasiram, R.K., Zhen, C., Chhabra, A., Thulasiraman, P., Gumel, A.: A second order L0 stable algorithm for evaluating European options. Intl. J. of High Performance Computing and Networking (IJHPCN) 4, 311–320 (2006)CrossRefGoogle Scholar
  15. 15.
    Volckaert, B., Thysebaert, P., De Leenheer, M., De Turck, F., Dhoedt, B., Demeester, P.: Network aware scheduling in grids. In: Proceedings of the 9th European Conference on Networks & Optical Communications (NOC 2004), Eindhoven, Netherlands (June 2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Saurabh Kumar Garg
    • 1
  • Bhanu Sharma
    • 1
  • Rodrigos N. Calheiros
    • 1
  • Ruppa K. Thulasiram
    • 1
  • Parimala Thulasiraman
    • 1
  • Rajkumar Buyya
    • 1
  1. 1.Department of Computing and Information SystemsUniversity of MelbourneMelbourneAustralia

Personalised recommendations