Advertisement

Correction of Aberrations

  • Harald Rose
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 142)

Abstract

Several multipole correctors compensating for the unavoidable axial aberrations of round lenses are outlined. It is shown that the correction of chromatic aberration requires superposed electric and magnetic quadrupole fields which act as first-order Wien filters. The hexapole semi-aplanat which eliminates third-order spherical aberration and the radial off-axial coma is discussed in detail as well as quadrupole–octopole correctors compensating for spherical and chromatic aberration.

Keywords

Spherical Aberration Wien Filter Chromatic Aberration Magnetic Quadrupole Quadrupole Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 16.
    O. Scherzer, Optik 2, 114 (1947)Google Scholar
  2. 22.
    H. Rose, Optik 85, 19 (1990)Google Scholar
  3. 64.
    D. Preikszas, H. Rose, Optik 100, 179 (1995)Google Scholar
  4. 79.
    H. Rose, D. Krahl, in Energy-Filtering Transmission Electron Microscopy, ed. by L. Reimer (Springer, Berlin, 1995), pp. 43–149Google Scholar
  5. 83.
    D.W.O. Heddle, Electrostatic Lens Systems (Adam Hilhger, Breistol, 1991)CrossRefGoogle Scholar
  6. 96.
    H. Rose, Optik 51, 15 (1978)Google Scholar
  7. 102.
    J. Zach, M. Haider, Optik 98, 112 (1995)Google Scholar
  8. 136.
    R. Fink, M.R. Weiss, E. Umbach, D. Preikszas, H. Rose, R. Spehr, P. Hartel, W. Engel, R. Degenhardt, R. Wichtendahl, H. Kuhlenbeck, W. Erlebach, K. Ihrmann, R. Schloegel, H.J. Freund, A.M. Bradshaw, G. Lilienkamp, T. Schmidt, E. Bauer, G. Benner, J. Electron Spectrosc. Relat. Phenom. 84, 231 (1997)CrossRefGoogle Scholar
  9. 141.
    W. Tretner, Optik 11, 312 (1954)Google Scholar
  10. 142.
    W. Tretner, Optik 16, 155 (1959)Google Scholar
  11. 143.
    R.W. Moses, in Image Processing and Computer-Aided Design in Electron Optics, ed. by P.W. Hawkes (Academic, New York, 1973), pp. 250–272Google Scholar
  12. 144.
    O. Scherzer, J. Appl. Phys. 20, 20 (1949)zbMATHGoogle Scholar
  13. 145.
    J. Zach, M. Haider, Nucl. Instrum. Meth. Phys. Res. A 365, 316 (1995)ADSCrossRefGoogle Scholar
  14. 146.
    D. Typke, Optik 34, 573 (1972)Google Scholar
  15. 147.
    D. Typke, Optik 36, 124 (1972)Google Scholar
  16. 148.
    G. Schoenhense, H. Spieker, J. Vac. Sci. Technol. B 20, 2526 (2002)CrossRefGoogle Scholar
  17. 149.
    A. Septier, in Advances in Optical and Electron Microscopy, vol. 1, ed. by R. Barer, V.E. Cosslett (Academic, New York, 1966), pp. 204–274Google Scholar
  18. 150.
    C. Weissbaecker, H. Rose, J. Electron Microsc. 50, 383 (2001)CrossRefGoogle Scholar
  19. 151.
    C. Weissbaecker, H. Rose, J. Electron Microsc. 51, 45 (2001)Google Scholar
  20. 152.
    A. Huber, J. Baertle, E. Plies, Nucl. Instrum. Meth. Phys. Res. A 519, 320 (2004)ADSCrossRefGoogle Scholar
  21. 153.
    D.C. Carey, Nucl. Instrum. Meth. Phys. Res. A 189, 365 (1981)ADSCrossRefGoogle Scholar
  22. 154.
    P. Hartel, D. Preikszas, R. Spehr, H. Mueller, H. Rose, Adv. Imaging Electron Phys. 120, 41 (2002)CrossRefGoogle Scholar
  23. 155.
    M. Haider, S. Uhlemann, E. Schwan, H. Rose, B. Kabius, K. Urban, Nature 392, 768 (1998)ADSCrossRefGoogle Scholar
  24. 156.
    C.L. Jia, M. Lentzen, K. Urban, Science 299, 870 (2004)ADSCrossRefGoogle Scholar
  25. 157.
    H. Rose, Nucl. Instrum. Meth. Phys. Res. A 519, 12 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Harald Rose
    • 1
  1. 1.Institut für Angewandte PhysikTU DarmstadtDarmstadtGermany

Personalised recommendations