Induction of Ordinal Classification Rules from Incomplete Data

  • Jerzy Błaszczyński
  • Roman Słowiński
  • Marcin Szeląg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7413)


In this paper, we consider different ways of handling missing values in ordinal classification problems with monotonicity constraints within Dominance-based Rough Set Approach (DRSA). We show how to induce classification rules in a way that has desirable properties. Our considerations are extended to an experimental comparison of the postulated rule classifier with other ordinal and non-ordinal classifiers.


Dominance-based Rough Set Approach Ordinal classification with monotonicity constraints Missing values Decision rules 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ben-David, A.: Monotonicity maintenance in information-theoretic machine learning algorithms. Machine Learning 19(1), 29–43 (1995)Google Scholar
  2. 2.
    Błaszczyński, J., Greco, S., Słowiński, R.: Inductive discovery of laws using monotonic rules. Engineering Applications of Artif. Intelligence 25, 284–294 (2012)CrossRefGoogle Scholar
  3. 3.
    Błaszczyński, J., Greco, S., Słowiński, R.: Multi-criteria classification – a new scheme for application of dominance-based decision rules. European Journal of Operational Research 181(3), 1030–1044 (2007)zbMATHCrossRefGoogle Scholar
  4. 4.
    Błaszczyński, J., Greco, S., Słowiński, R., Szeląg, M.: Monotonic variable consistency rough set approaches. Int. J. of Approx. Reasoning 50(7), 979–999 (2009)zbMATHCrossRefGoogle Scholar
  5. 5.
    Błaszczyński, J., Słowiński, R., Szeląg, M.: Sequential covering rule induction algorithm for variable consistency rough set approaches. Information Sciences 181, 987–1002 (2011)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Daniels, H., Kamp, B.: Applications of mlp networks to bond rating and house pricing. Neural Computation and Applications 8, 226–234 (1999)CrossRefGoogle Scholar
  7. 7.
    Dembczyński, K., Greco, S., Słowiński, R.: Rough set approach to multiple criteria classification with imprecise evaluations and assignments. European Journal of Operational Research 198(2), 626–636 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Demsar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7, 1–30 (2006)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Greco, S., Matarazzo, B., Słowiński, R.: Handling Missing Values in Rough Set Analysis of Multi-attribute and Multi-criteria Decision Problems. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 146–157. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Greco, S., Matarazzo, B., Słowiński, R.: Dealing with missing data in rough set analysis of multi-attribute and multi-criteria decision problems. In: Zanakis, S., et al. (eds.) Decision Making: Recent Developments and Worldwide Applications, pp. 295–316. Kluwer, Dordrecht (2000)Google Scholar
  11. 11.
    Greco, S., Matarazzo, B., Słowiński, R.: Rough sets theory for multicriteria decision analysis. European Journal of Operational Research 129(1), 1–47 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Greco, S., Matarazzo, B., Słowiński, R.: Granular computing for reasoning about ordered data: the dominance-based rough set approach. In: Pedrycz, W., et al. (eds.) Handbook of Granular Computing, ch.15, Wiley, Chichester (2008)Google Scholar
  13. 13.
    Grzymała-Busse, J.W., Hu, M.: A Comparison of Several Approaches to Missing Attribute Values in Data Mining. In: Ziarko, W., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 378–385. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Grzymała-Busse, J.W.: Mining Incomplete Data—A Rough Set Approach. In: Yao, J., Ramanna, S., Wang, G., Suraj, Z. (eds.) RSKT 2011. LNCS, vol. 6954, pp. 1–7. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, Berlin (2009)zbMATHCrossRefGoogle Scholar
  16. 16.
    Koop, G.: Analysis of Economic Data. Wiley, Chichester (2000)Google Scholar
  17. 17.
    Kryszkiewicz, M.: Rough set approach to incomplete information systems. Information Sciences 112, 39–49 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about. Data. Kluwer Academic Publishers, Dordrecht (1991)zbMATHCrossRefGoogle Scholar
  19. 19.
    Słowiński, R., Greco, S., Matarazzo, B.: Rough sets in decision making. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science, pp. 7753–7786. Springer, New York (2009)Google Scholar
  20. 20.
    Stefanowski, J., Tsoukias, A.: Incomplete information tables and rough classification. Computational Intelligence 17, 545–566 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jerzy Błaszczyński
    • 1
  • Roman Słowiński
    • 1
    • 2
  • Marcin Szeląg
    • 1
  1. 1.Institute of Computing SciencePoznań University of TechnologyPoznańPoland
  2. 2.Systems Research InstitutePolish Academy of SciencesWarsawPoland

Personalised recommendations