Advertisement

Attribute Characteristics of Object (Property) Oriented Concept Lattices

  • Ling Wei
  • Min-Qian Liu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7413)

Abstract

Object oriented concept lattices and property oriented concept lattices are two kinds of concept lattices and belong to formal concept analysis. In the theory of formal concept analysis, attribute reduction is one of basic problems, it can make the discovery of implicit knowledge in data easier and the representation simpler. Different attributes play different roles in reduction theory. This paper studies the attribute characteristics of object oriented concept lattices, and gives equivalent conditions for each kind of attribute characteristics. Finally, the paper shows that there are the same attribute characteristics for both object oriented concept lattices and property oriented concept lattices, so, study each one of them can obtain the other’s information.

Keywords

Formal context attribute characteristics object oriented concept lattice property oriented concept lattice 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concept, ordered sets. In: Rival, I. (ed.), pp. 445–470. Reidel, Dordrecht (1982)Google Scholar
  2. 2.
    Godin, R.: Incremental concept formation algorithm based on Galois lattices. Comput. Intell. 11(2), 246–267 (1999)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Saquer, J., Deogun, J.S.: Formal Rough Concept Analysis. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 91–99. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  4. 4.
    Kent, R.E., Bowman, C.M.: Digital Libraries, Conceptual Knowledge Systems and the Nebula Interface. Technical Report, University of Arkansas (1995)Google Scholar
  5. 5.
    Sutton, A., Maletic, J.I.: Recovering UML class models from C++: a detailed explanation. Inf. Softw. Technol. 48(3), 212–229 (2007)CrossRefGoogle Scholar
  6. 6.
    Ganter, B., Stumme, G., Wille, R.: Formal Concept Analysis: Foundations and Applications. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  7. 7.
    Zhang, W.X., Wei, L., Qi, J.J.: Attribute reduction theory and approach to concept lattice. Science in China Series F-Information Science 48(6), 713–726 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Wang, X., Ma, J.-M.: A Novel Approach to Attribute Reduction in Concept Lattices. In: Wang, G.-Y., Peters, J.F., Skowron, A., Yao, Y. (eds.) RSKT 2006. LNCS (LNAI), vol. 4062, pp. 522–529. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Liu, M.Q., Wei, L., Zhao, W.: The Reduction Theory of Object Oriented Concept Lattices and Property Oriented Concept Lattices. In: Wen, P., Li, Y., Polkowski, L., Yao, Y., Tsumoto, S., Wang, G. (eds.) RSKT 2009. LNCS, vol. 5589, pp. 587–593. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Wei, L., Zhang, X.-H., Qi, J.-J.: Granular Reduction of Property-Oriented Concept Lattices. In: Croitoru, M., Ferré, S., Lukose, D. (eds.) ICCS 2010. LNCS, vol. 6208, pp. 154–164. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Pawlak, Z.: Rough sets. International Journal of Computer and Information Science 11, 341–356 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Düntsch, I., Gediga, G.: Approximation Operators in Qualitative Data Analysis. In: de Swart, H., Orłowska, E., Schmidt, G., Roubens, M. (eds.) TARSKI 2003. LNCS, vol. 2929, pp. 214–230. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Gediga, G., Duntsch, I.: Modal-style operations in qualitative data analysis. In: Proceedings of the 2002 IEEE International Conference on Data Mining, pp. 155–162 (2002)Google Scholar
  14. 14.
    Yao, Y.Y.: Concept lattices in rough set theory. In: Dick, S., Kurgan, L., Pedrycz, W., Reformat, M. (eds.) Proceedings of 2004 Annual Meeting of the North American Fuzzy Information Processing Society, June 27-30, pp. 796–801 (2004)Google Scholar
  15. 15.
    Ganter, B., Wille, R.: Formal Concept Analysis, Mathematical Foundations. Springer, Berlin (1999)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ling Wei
    • 1
  • Min-Qian Liu
    • 1
  1. 1.Department of MathematicsNorthwest UniversityXi’anP.R. China

Personalised recommendations