Advertisement

AFS-Based Formal Concept Analysis within the Logic Description of Granules

  • Lidong Wang
  • Xiaodong Liu
  • Xin Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7413)

Abstract

AFS (Axiomatic Fuzzy Sets) -based formal concept is a generalization and development of classical concept lattice and monotone concept, which can be applied to represent the logic operations of queries in information retrieval. Granular computing is an emerging field of study that attempts to formalize and explore methods and heuristics of human problem solving with multiple levels of granularity and abstraction. The main objective of this paper is to investigate and develop AFS-based formal concept by using granule logics. Some generalized formulas of granular computing are introduced, in which AFS-based formal concept and AFS-based formal concept on multi-valued context are interpreted from the point of granular computing, respectively.

Keywords

Formal concept concept lattice granular computing AFS-based formal concept 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bargiela, A., Pedrycz, W.: Granular Computing: An Introduction. Kluwer Academic Publishers, Boston (2002)CrossRefGoogle Scholar
  2. 2.
    Deogun, J.S., Saquer, J.: Monotone Concepts for Formal Concept Analysis. Discrete Appl. Math. 144, 70–78 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Hirota, K., Pedrycz, W.: Fuzzy Computing for Data Mining. Proc. of the IEEE 87, 1575–1600 (1999)CrossRefGoogle Scholar
  4. 4.
    Lin, T.Y.: Granular Computing. Announcement of the BISC Special Interest Group on Granular Computing (1997)Google Scholar
  5. 5.
    Lin, T.Y.: Granular Computing, Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.) RSFDGrC 2003. LNCS (LNAI), vol. 2639, pp. 16–24. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Liu, X.D.: The Fuzzy Theory Based on AFS Algebras and AFS Structure. J. Math. Anal. Appl. 217, 459–478 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Liu, X.D., Pedrycz, W.: Axiomatic Fuzzy Set Theroy and Its Applications. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Pawlak, Z.: Rough Sets-Theoretical Aspects of Reasoning About Data. Kluwer Publishers, Boston (1991)zbMATHGoogle Scholar
  9. 9.
    Pedrycz, W.: Granular Computing: An Emerging Paradigm. Physica-Verlag, Heidelberg (2001)zbMATHGoogle Scholar
  10. 10.
    Qiu, G.F., Ma, J.M., Yang, H.Z., Zhang, W.X.: A Mathematical Model for Concept Granular Computing Systems. Sci China Inf. Sci. 53(7), 1397–1408 (2010)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Wang, L.D., Liu, X.D.: Concept Analysis via Rough Set and AFS Algebra. Inf. Sci. 178(21), 4125–4137 (2008)zbMATHCrossRefGoogle Scholar
  12. 12.
    Wang, L.D., Liu, X.D., Qiu, W.R.: Nearness Approximation Space Based on Axiomatic Fuzzy Sets. Int. J. Approx. Reason 53, 200–211 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Wei, L., Zhang, X.H., Qi, J.J.: Granular Reduction of Property-Oriented Concept Lattices. In: Croitoru, M., Ferré, S., Lukose, D. (eds.) ICCS 2010. LNCS, vol. 6208, pp. 154–164. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Wille, R.: Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel (1982)Google Scholar
  15. 15.
    Wu, W.Z., Leung, Y., Mi, J.S.: Granular Computing and Knowledge Reduction in Formal Contexts. IEEE T Knwl. Data En. 21(10), 1461–1474 (2009)CrossRefGoogle Scholar
  16. 16.
    Yao, J.T.: A Ten-Year Review of Granular Computing. In: GrC 2007, pp. 734–739 (2007)Google Scholar
  17. 17.
    Yao, Y.Y.: Granular Computing: Basic Issues and Possible Solutions. In: Proceedings of the 5th Joint Conference on Information Sciences, pp. 186–189 (2000)Google Scholar
  18. 18.
    Yao, Y.Y.: A Partition Model of Granular Computing. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 232–253. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Yao, Y.Y., Zhou, B.: A Logic Language of Granular Computing. In: 6th IEEE International Conference on Cognitive Informatics, pp. 178–185 (2007)Google Scholar
  20. 20.
    Zadeh, L.A.: Fuzzy Sets and Information Granurity. In: Gupta, M., Ragade, R.K., Yager, R.R. (eds.) Advances in Fuzzy Set Theory and Applications, pp. 3–18. North-Holland Publishing Company (1979)Google Scholar
  21. 21.
    Zadeh, L.A.: Key Roles of Information Granulation and Fuzzy Logic in Human Reasoning, Concept Formulation and Computing with Words. In: Proceedings of IEEE 5th International Fuzzy Systems, p. 1 (1996)Google Scholar
  22. 22.
    Zadeh, L.A.: Towards a Theory of Fuzzy Information Granulation and Its Centrality in Human Reasoning and Fuzzy Logic. Fuzzy Set Syst. 90(2), 111–127 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Zadeh, L.A.: Some Reflections on Soft Computing, Granular Computing and their Roles in the Conception, Design And Utilization of Information/Intelligent Systems. Soft Comput. 2, 23–25 (1998)CrossRefGoogle Scholar
  24. 24.
    Zhao, Y., Halang, W.A., Wang, X.: Rough Ontology Mapping in E-Business Integration. SCI, vol. 37, pp. 75–93. Springer, Heidelberg (2007)Google Scholar
  25. 25.
    Zhou, B., Yao, Y.Y.: A Logic Approach to Granular Computing. Int. J. Cogn. Inform. Natl. Intell. 2, 63–79 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Lidong Wang
    • 1
  • Xiaodong Liu
    • 1
  • Xin Wang
    • 1
  1. 1.Department of MathematicsDalian Maritime UniversityDalianPeople’s Republic of China

Personalised recommendations