Advertisement

A Heuristic Knowledge Reduction Algorithm for Real Decision Formal Contexts

  • Jinhai Li
  • Changlin Mei
  • Yuejin Lv
  • Xiao Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7413)

Abstract

Knowledge reduction is one of the key issues in real formal concept analysis. This study investigates the issue of developing efficient knowledge reduction methods for real decision formal contexts. A corresponding heuristic algorithm is proposed and some numerical experiments are conducted to assess its efficiency.

Keywords

Decision Rule Reduction Algorithm Concept Lattice Formal Context Real Interval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aswani-Kumar, C., Srinivas, S.: Concept lattice reduction using fuzzy K-Means clustering. Expert Systems with Applications 37(3), 2696–2704 (2010)CrossRefGoogle Scholar
  2. 2.
    Bĕlohlávek, R.: Fuzzy Galois connections. Mathematical Logic Quarterly 45(4), 497–504 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Burusco, A., Fuentes-González, R.: The study of the L-fuzzy concept lattice. Mathware and Soft Computing 3, 209–218 (1994)Google Scholar
  4. 4.
    Düntsch, I., Gediga, G.: Approximation Operators in Qualitative Data Analysis. In: de Swart, H., Orłowska, E., Schmidt, G., Roubens, M. (eds.) TARSKI 2003. LNCS, vol. 2929, pp. 214–230. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Elloumi, S., Jaam, J., Hasnah, A., Jaoua, A., Nafkha, I.: A multi-level conceptual data reduction approach based on the Lukasiewicz implication. Information Sciences 163(4), 253–262 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Ganter, B., Wille, R.: Formal Concept Analysis, Mathematical Foundations. Springer, Berlin (1999)zbMATHCrossRefGoogle Scholar
  7. 7.
    Jaoua, A., Elloumi, S.: Galois connection, formal concepts and Galois lattice in real relations: application in a real classifier. The Journal of Systems and Software 60, 149–163 (2002)CrossRefGoogle Scholar
  8. 8.
    Li, J., Mei, C., Lv, Y.: Knowledge reduction in decision formal contexts. Knowledge-Based Systems 24(5), 709–715 (2011)CrossRefGoogle Scholar
  9. 9.
    Li, J., Mei, C., Lv, Y.: A heuristic knowledge-reduction method for decision formal contexts. Computers and Mathematics with Applications 61(4), 1096–1106 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Li, J., Mei, C., Lv, Y.: Knowledge reduction in formal decision contexts based on an order-preserving mapping. International Journal of General Systems 41(2), 143–161 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Li, J., Mei, C., Lv, Y.: Knowledge reduction in real decision formal contexts. Information Sciences 189, 191–207 (2012)CrossRefGoogle Scholar
  12. 12.
    Li, L.F., Zhang, J.K.: Attribute reduction in fuzzy concept lattices based on T implication. Knowledge-Based Systems 23(6), 497–503 (2010)CrossRefGoogle Scholar
  13. 13.
    Liu, M., Shao, M.W., Zhang, W.X., Wu, C.: Reduction method for concept lattices based on rough set theory and its application. Computers and Mathematics with Applications 53(9), 1390–1410 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Mi, J.S., Leung, Y., Wu, W.Z.: Approaches to attribute reduction in concept lattices induced by axialities. Knowledge-Based Systems 23(6), 504–511 (2010)CrossRefGoogle Scholar
  15. 15.
    Pei, D., Li, M.Z., Mi, J.S.: Attribute reduction in fuzzy decision formal contexts. In: 2011 International Conference on Machine Learning and Cybernetics, pp. 204–208. IEEE Press, New York (2011)CrossRefGoogle Scholar
  16. 16.
    Popescu, A.: A general approach to fuzzy concepts. Mathematical Logic Quarterly 50(3), 265–280 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Wang, H., Zhang, W.X.: Approaches to knowledge reduction in generalized consistent decision formal context. Mathematical and Computer Modelling 48(11-12), 1677–1684 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Wei, L., Qi, J.J., Zhang, W.X.: Attribute reduction theory of concept lattice based on decision formal contexts. Science in China: Series F—Information Sciences 51(7), 910–923 (2008)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel, Dordrecht (1982)Google Scholar
  20. 20.
    Wu, W.Z., Leung, Y., Mi, J.S.: Granular computing and knowledge reduction in formal contexts. IEEE Transactions on Knowledge and Data Engineering 21(10), 1461–1474 (2009)CrossRefGoogle Scholar
  21. 21.
    Yang, H.Z., Leung, Y., Shao, M.W.: Rule acquisition and attribute reduction in real decision formal contexts. Soft Computing 15(6), 1115–1128 (2011)zbMATHCrossRefGoogle Scholar
  22. 22.
    Yao, Y.Y.: Concept lattices in rough set theory. In: Dick, S., Kurgan, L., Pedrycz, W., Reformat, M. (eds.) Proceedings of 23rd International Meeting of the North American Fuzzy Information Processing Society, pp. 796–801. IEEE Press, New York (2004)Google Scholar
  23. 23.
    Yao, Y.Y.: A Comparative Study of Formal Concept Analysis and Rough Set Theory in Data Analysis. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 59–68. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  24. 24.
    Zhang, W.X., Ma, J.M., Fan, S.Q.: Variable threshold concept lattices. Information Sciences 177(22), 4883–4892 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Zhang, W.X., Qiu, G.F.: Uncertain decision making based on rough sets. Tsinghua University Press, Beijing (2005)Google Scholar
  26. 26.
    Zhang, W.X., Wei, L., Qi, J.J.: Attribute reduction theory and approach to concept lattice. Science in China: Series F—Information Sciences 48(6), 713–726 (2005)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jinhai Li
    • 1
  • Changlin Mei
    • 1
  • Yuejin Lv
    • 2
  • Xiao Zhang
    • 1
  1. 1.School of Mathematics and StatisticsXi’an Jiaotong UniversityXi’anP.R. China
  2. 2.School of Mathematics and Information SciencesGuangxi UniversityNanningP.R. China

Personalised recommendations