Advertisement

On Cost and Uncertainty of Decision Trees

  • Igor Chikalov
  • Shahid Hussain
  • Mikhail Moshkov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7413)

Abstract

This paper describes a new tool for the study of relationships between the cost (depth, average depth, number of nodes, etc.) and uncertainty of decision trees, which is closely connected with accuracy of trees. In addition to the algorithm the paper also presents the experimental results of application of our algorithm on some of the datasets acquired from UCI ML Repository [1].

Keywords

decision trees cost functions uncertainty measure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Frank, A., Asuncion, A.: UCI Machine Learning Repository (2010)Google Scholar
  2. 2.
    Alkhalid, A., Chikalov, I., Moshkov, M.: On Algorithm for Building of Optimal α-Decision Trees. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds.) RSCTC 2010. LNCS, vol. 6086, pp. 438–445. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Alkhalid, A., Chikalov, I., Moshkov, M.: A Tool for Study of Optimal Decision Trees. In: Yu, J., Greco, S., Lingras, P., Wang, G., Skowron, A. (eds.) RSKT 2010. LNCS, vol. 6401, pp. 353–360. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Alkhalid, A., Chikalov, I., Hussain, S., Moshkov, M.: Extensions of Dynamic Programming as a New Tool for Decision Tree Optimization. In: Ramanna, S., Jain, L.C., Howlett, R.J. (eds.) Emerging Paradigms in Machine Learning and Applications. SIST, vol. 13, pp. 11–29. Springer, Heidelberg (2012)Google Scholar
  5. 5.
    Alkhalid, A., Amin, T., Chikalov, I., Hussain, S., Moshkov, M., Zielosko, B.: Dagger: a tool for analysis and optimization of decision trees and rules. In: Computational Informatics, Social Factors and New Information Technologies: Hypermedia Perspectives and Avant-Garde Experiencies in the Era of Communicability Expansion, pp. 29–39. Blue Herons (2011)Google Scholar
  6. 6.
    Chikalov, I., Hussain, S., Moshkov, M.: Relationships between Depth and Number of Misclassifications for Decision Trees. In: Kuznetsov, S.O., Ślęzak, D., Hepting, D.H., Mirkin, B.G. (eds.) RSFDGrC 2011. LNCS, vol. 6743, pp. 286–292. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Pawlak, Z.: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)zbMATHGoogle Scholar
  8. 8.
    Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems. In: Slowinski, R. (ed.) Intelligent Decision Support. Handbook of Applications and Advances of the Rough Set Theory, pp. 331–362. Kluwer Academic Publishers, Dordrecht (1992)Google Scholar
  9. 9.
    Nguyen, H.S.: From optimal hyperplanes to optimal decision trees. Fundamenta Informaticae 34(1-2), 145–174 (1998)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Igor Chikalov
    • 1
  • Shahid Hussain
    • 1
  • Mikhail Moshkov
    • 1
  1. 1.Mathematical and Computer Sciences & Engineering DivisionKing Abdullah University of Science and TechnologyThuwalSaudi Arabia

Personalised recommendations