Abstract

A theory of three-way decisions is constructed based on the notions of acceptance, rejection and noncommitment. It is an extension of the commonly used binary-decision model with an added third option. Three-way decisions play a key role in everyday decision-making and have been widely used in many fields and disciplines. An outline of a theory of three-way decisions is presented by examining its basic ingredients, interpretations, and relationships to other theories.

Keywords

Total Order Bayesian Decision Theory Decision Theoretic Framework Social Judgement Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Azam, N., Yao, J.T.: Multiple Criteria Decision Analysis with Game-theoretic Rough Sets. In: Li, T., Nguyen, H.S., Wang, G., Grzymala-Busse, J.W., Janicki, R., Hassanien, A.E., Yu, H. (eds.) RSKT 2012. LNCS (LNAI), vol. 7414, pp. 399–408. Springer, Heidelberg (2012)Google Scholar
  2. 2.
    Deng, X.F., Yao, Y.Y.: An Information-Theoretic Interpretation of Thresholds in Probabilistic Rough Sets. In: Li, T., Nguyen, H.S., Wang, G., Grzymala-Busse, J.W., Janicki, R., Hassanien, A.E., Yu, H. (eds.) RSKT 2012. LNCS (LNAI), vol. 7414, pp. 369–378. Springer, Heidelberg (2012)Google Scholar
  3. 3.
    Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley, New York (1973)MATHGoogle Scholar
  4. 4.
    Gottwald, S.: A Treatise on Many-Valued Logics. Research Studies Press, Baldock (2001)MATHGoogle Scholar
  5. 5.
    Goudey, R.: Do statistical inferences allowing three alternative decision give better feedback for environmentally precautionary decision-making. Journal of Environmental Management 85, 338–344 (2007)CrossRefGoogle Scholar
  6. 6.
    Granberg, D., Steele, L.: Procedural considerations in measuring latitudes of acceptance, rejection, and noncommitment. Social Forces 52, 538–542 (1974)Google Scholar
  7. 7.
    Grzymała-Busse, J.W.: Generalized Parameterized Approximations. In: Yao, J., Ramanna, S., Wang, G., Suraj, Z. (eds.) RSKT 2011. LNCS (LNAI), vol. 6954, pp. 136–145. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Grzymala-Busse, J.W., Yao, Y.Y.: Probabilistic rule induction with the LERS data mining system. International Journal of Intelligent Systems 26, 518–539 (2011)CrossRefGoogle Scholar
  9. 9.
    Herbert, J.P., Yao, J.T.: Learning Optimal Parameters in Decision-Theoretic Rough Sets. In: Wen, P., Li, Y., Polkowski, L., Yao, Y., Tsumoto, S., Wang, G. (eds.) RSKT 2009. LNCS (LNAI), vol. 5589, pp. 610–617. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Herbert, J.P., Yao, J.T.: Game-theoretic rough sets. Fundamenta Informaticae 108, 267–286 (2011)MathSciNetMATHGoogle Scholar
  11. 11.
    Herbert, J.P., Yao, J.T.: Analysis of Data-Driven Parameters in Game-Theoretic Rough Sets. In: Yao, J., Ramanna, S., Wang, G., Suraj, Z. (eds.) RSKT 2011. LNCS (LNAI), vol. 6954, pp. 447–456. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Jia, X.Y., Li, W.W., Shang, L., Chen, J.J.: An Optimization Viewpoint of Decision-Theoretic Rough Set Model. In: Yao, J., Ramanna, S., Wang, G., Suraj, Z. (eds.) RSKT 2011. LNCS (LNAI), vol. 6954, pp. 457–465. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Jia, X.Y., Zhang, K., Shang, L.: Three-way Decisions Solution to Filter Spam Email: An Empirical Study. In: Yao, J., Yang, Y., Slowinski, R., Greco, S., Li, H., Mitra, S., Polkowski, L. (eds.) RSCTC 2012. LNCS (LNAI), vol. 7413, pp. 287–296. Springer, Heidelberg (2012)Google Scholar
  14. 14.
    Keeney, R.L., Raiffa, H.: Decisions With Multiple Objectives: Preferences and Value Tradeoffs. John Wiley and Sons, New York (1976)Google Scholar
  15. 15.
    Kleene, S.C.: Introduction to Mathematics. Groningen, New York (1952)Google Scholar
  16. 16.
    Li, H.X., Wang, M.H., Zhou, X.Z., Zhao, J.B.: An interval set model for learning rules from incomplete information table. International Journal of Approximate Reasoning 53, 24–37 (2012)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Li, H.X., Zhou, X.Z.: Risk decision making based on decision-theoretic rough set: A three-way view decision model. International Journal of Computational Intelligence Systems 4, 1–11 (2011)CrossRefGoogle Scholar
  18. 18.
    Li, H.X., Zhou, X.Z., Li, T.R., Wang, G.Y., Miao, D.Q., Yao, Y.Y. (eds.): Decision-Theoretic Rough Sets Theory and Recent Research. Science Press, Beijing (2011) (in Chinese)Google Scholar
  19. 19.
    Li, H., Zhou, X., Zhao, J., Huang, B.: Cost-Sensitive Classification Based on Decision-Theoretic Rough Set Model. In: Li, T., Nguyen, H.S., Wang, G., Grzymala-Busse, J.W., Janicki, R., Hassanien, A.E., Yu, H. (eds.) RSKT 2012. LNCS (LNAI), vol. 7414, pp. 379–388. Springer, Heidelberg (2012)Google Scholar
  20. 20.
    Li, H.X., Zhou, X.Z., Zhao, J.B., Liu, D.: Attribute Reduction in Decision-Theoretic Rough Set Model: A Further Investigation. In: Yao, J., Ramanna, S., Wang, G., Suraj, Z. (eds.) RSKT 2011. LNCS (LNAI), vol. 6954, pp. 466–475. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    Li, W., Miao, D.Q., Wang, W.L., Zhang, N.: Hierarchical rough decision theoretic framework for text classification. In: Proceedings of the 9th IEEE International Conference on Cognitive Informatics, pp. 484–489 (2009)Google Scholar
  22. 22.
    Lipski Jr., W.: On semantic issues connected with incomplete information databases. ACM Transactions on Database Systems 4, 269–296 (1979)CrossRefGoogle Scholar
  23. 23.
    Liu, D., Li, H.X., Zhou, X.Z.: Two decades’ research on decision-theoretic rough sets. In: Proceedings of the 9th IEEE International Conference on Cognitive Informatics, pp. 968–973 (2010)Google Scholar
  24. 24.
    Liu, D., Li, T.R., Li, H.X.: A multiple-category classification approach with decision-theoretic rough sets. Fundamenta Informaticae 115, 173–188 (2012)Google Scholar
  25. 25.
    Liu, D., Li, T.R., Liang, D.C.: A New Discriminant Analysis Approach under Decision-Theoretic Rough Sets. In: Yao, J., Ramanna, S., Wang, G., Suraj, Z. (eds.) RSKT 2011. LNCS (LNAI), vol. 6954, pp. 476–485. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  26. 26.
    Liu, D., Li, T., Liang, D.: Decision-theoretic Rough Sets with Probabilistic Distribution. In: Li, T., Nguyen, H.S., Wang, G., Grzymala-Busse, J.W., Janicki, R., Hassanien, A.E., Yu, H. (eds.) RSKT 2012. LNCS (LNAI), vol. 7414, pp. 389–398. Springer, Heidelberg (2012)Google Scholar
  27. 27.
    Liu, D., Li, T.R., Ruan, D.: Probabilistic model criteria with decision-theoretic rough sets. Information Sciences 181, 3709–3722 (2011)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Liu, D., Yao, Y.Y., Li, T.R.: Three-way investment decisions with decision-theoretic rough sets. International Journal of Computational Intelligence Systems 4, 66–74 (2011)CrossRefGoogle Scholar
  29. 29.
    Liu, J., Min, F., Liao, S., Zhu, W.: Minimal Test Cost Feature Selection with Positive Region Constraint. In: Yao, J., Yang, Y., Slowinski, R., Greco, S., Li, H., Mitra, S., Polkowski, L. (eds.) RSCTC 2012, vol. 7413, pp. 259–266. Springer, Heidelberg (2012)Google Scholar
  30. 30.
    Lurie, J.D., Sox, H.C.: Principles of medical decision making. Spine 24, 493–498 (1999)CrossRefGoogle Scholar
  31. 31.
    Ma, X., Wang, G., Yu, H.: Multiple-category Attribute Reduct Using Decision-Theoretic Rough Set Model. In: Yao, J., Yang, Y., Slowinski, R., Greco, S., Li, H., Mitra, S., Polkowski, L. (eds.) RSCTC 2012. LNCS (LNAI), vol. 7413, pp. 267–276. Springer, Heidelberg (2012)Google Scholar
  32. 32.
    Marinoff, L.: The Middle Way, Finding Happiness in a World of Extremes. Sterling, New York (2007)Google Scholar
  33. 33.
    Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Pedrycz, W.: Shadowed sets: Representing and processing fuzzy sets. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 28, 103–109 (1998)CrossRefGoogle Scholar
  35. 35.
    Pedrycz, W.: From fuzzy sets to shadowed sets: Interpretation and computing. International Journal of Intelligent Systems 24, 48–61 (2009)MATHCrossRefGoogle Scholar
  36. 36.
    Rescher, N.: Many-valued Logic. McGraw-Hill, New York (1969)MATHGoogle Scholar
  37. 37.
    Pauker, S.G., Kassirer, J.P.: The threshold approach to clinical decision making. The New England Journal of Medicine 302, 1109–1117 (1980)CrossRefGoogle Scholar
  38. 38.
    Schechter, C.B.: Sequential analysis in a Bayesian model of diastolic blood pressure measurement. Medical Decision Making 8, 191–196 (1988)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Sherif, M., Hovland, C.I.: Social Judgment: Assimilation and Contrast Effects in Communication and Attitude Change. Yale University Press, New Haven (1961)Google Scholar
  40. 40.
    Smith, E.E.: Concepts and induction. In: Posner, M.I. (ed.) Foundations of Cognitive Science, pp. 501–526. The MIT Press, Cambridge (1989)Google Scholar
  41. 41.
    van Mechelen, I., Hampton, J., Michalski, R.S., Theuns, P. (eds.): Categories and Concepts, Theoretical Views and Inductive Data Analysis. Academic Press, New York (1993)Google Scholar
  42. 42.
    Wald, A.: Sequential tests of statistical hypotheses. The Annals of Mathematical Statistics 16, 117–186 (1945)MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Weller, A.C.: Editorial Peer Review: Its Strengths and Weaknesses. Information Today, Inc., Medford (2001)Google Scholar
  44. 44.
    Woodward, P.W., Naylor, J.C.: An application of Bayesian methods in SPC. The Statistician 42, 461–469 (1993)CrossRefGoogle Scholar
  45. 45.
    Yang, X.P., Song, H.G., Li, T.J.: Decision Making in Incomplete Information System Based on Decision-Theoretic Rough Sets. In: Yao, J., Ramanna, S., Wang, G., Suraj, Z. (eds.) RSKT 2011. LNCS (LNAI), vol. 6954, pp. 495–503. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  46. 46.
    Yang, X.P., Yao, J.T.: Modelling multi-agent three-way decisions with decision-theoretic rough sets. Fundamenta Informaticae 115, 157–171 (2012)Google Scholar
  47. 47.
    Yao, Y.Y.: Interval-set algebra for qualitative knowledge representation. In: Proceedings of the 5th International Conference on Computing and Information, pp. 370–374 (1993)Google Scholar
  48. 48.
    Yao, Y.Y.: Probabilistic approaches to rough sets. Expert Systems 20, 287–297 (2003)CrossRefGoogle Scholar
  49. 49.
    Yao, Y.Y.: A Note on Definability and Approximations. In: Peters, J.F., Skowron, A., Marek, V.W., Orłowska, E., Słowiński, R., Ziarko, W.P. (eds.) Transactions on Rough Sets VII. LNCS, vol. 4400, pp. 274–282. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  50. 50.
    Yao, Y.Y.: Decision-Theoretic Rough Set Models. In: Yao, J., Lingras, P., Wu, W.-Z., Szczuka, M.S., Cercone, N.J., Ślęzak, D. (eds.) RSKT 2007. LNCS (LNAI), vol. 4481, pp. 1–12. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  51. 51.
    Yao, Y.Y.: Probabilistic rough set approximations. International Journal of Approximation Reasoning 49, 255–271 (2008)MATHCrossRefGoogle Scholar
  52. 52.
    Yao, Y.Y.: Three-Way Decision: An Interpretation of Rules in Rough Set Theory. In: Wen, P., Li, Y., Polkowski, L., Yao, Y., Tsumoto, S., Wang, G. (eds.) RSKT 2009. LNCS (LNAI), vol. 5589, pp. 642–649. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  53. 53.
    Yao, Y.Y.: Interval sets and interval-set algebras. In: Proceedings of the 8th IEEE International Conference on Cognitive Informatics, pp. 307–314 (2009)Google Scholar
  54. 54.
    Yao, Y.Y.: Three-way decisions with probabilistic rough sets. Information Sciences 180, 341–353 (2010)MathSciNetCrossRefGoogle Scholar
  55. 55.
    Yao, Y.Y.: The superiority of three-way decisions in probabilistic rough set models. Information Sciences 181, 1080–1096 (2011)MathSciNetMATHCrossRefGoogle Scholar
  56. 56.
    Yao, Y.Y., Deng, X.F.: Sequential three-way decisions with probabilistic rough sets. In: Proceedings of the 10th IEEE International Conference on Cognitive Informatics & Cognitive Computing, pp. 120–125 (2011)Google Scholar
  57. 57.
    Yao, Y.Y., Wong, S.K.M.: A decision theoretic framework for approximating concepts. International Journal of Man-machine Studies 37, 793–809 (1992)CrossRefGoogle Scholar
  58. 58.
    Yao, Y.Y., Wong, S.K.M., Lingras, P.: A decision-theoretic rough set model. In: Ras, Z.W., Zemankova, M., Emrich, M.L. (eds.) Methodologies for Intelligent Systems, vol. 5, pp. 17–24. North-Holland, New York (1990)Google Scholar
  59. 59.
    Yao, Y.Y., Zhou, B.: Naive Bayesian Rough Sets. In: Yu, J., Greco, S., Lingras, P., Wang, G., Skowron, A. (eds.) RSKT 2010. LNCS (LNAI), vol. 6401, pp. 719–726. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  60. 60.
    Yu, H., Chu, S.S., Yang, D.C.: Autonomous knowledge-oriented clustering using decision-theoretic rough set theory. Fundamenta Informaticae 115, 141–156 (2012)Google Scholar
  61. 61.
    Yu, H., Liu, Z.G., Wang, G.Y.: Automatically Determining the Number of Clusters Using Decision-Theoretic Rough Set. In: Yao, J., Ramanna, S., Wang, G., Suraj, Z. (eds.) RSKT 2011. LNCS (LNAI), vol. 6954, pp. 504–513. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  62. 62.
    Yu, H., Wang, Y.: Three-way Decisions Method for Overlapping Clustering. In: Yao, J., Yang, Y., Slowinski, R., Greco, S., Li, H., Mitra, S., Polkowski, L. (eds.) RSCTC 2012. LNCS (LNAI), vol. 7413, pp. 277–286. Springer, Heidelberg (2012)Google Scholar
  63. 63.
    Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)MathSciNetMATHCrossRefGoogle Scholar
  64. 64.
    Zhou, B.: A New Formulation of Multi-category Decision-Theoretic Rough Sets. In: Yao, J., Ramanna, S., Wang, G., Suraj, Z. (eds.) RSKT 2011. LNCS (LNAI), vol. 6954, pp. 514–522. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  65. 65.
    Zhou, B., Yao, Y.Y., Luo, J.G.: A Three-Way Decision Approach to Email Spam Filtering. In: Farzindar, A., Kešelj, V. (eds.) Canadian AI 2010. LNCS (LNAI), vol. 6085, pp. 28–39. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  66. 66.
    Zhou, X.Z., Li, H.X.: A Multi-View Decision Model Based on Decision-Theoretic Rough Set. In: Wen, P., Li, Y., Polkowski, L., Yao, Y., Tsumoto, S., Wang, G. (eds.) RSKT 2009. LNCS (LNAI), vol. 5589, pp. 650–657. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yiyu Yao
    • 1
  1. 1.Department of Computer ScienceUniversity of ReginaReginaCanada

Personalised recommendations