Skip to main content

Assessment of Mechanical Properties of Skin by Shearwave Propagation and Acoustic Dispersion

  • Chapter
  • First Online:
Book cover Non Invasive Diagnostic Techniques in Clinical Dermatology

Abstract

In this chapter, we present a methodology of documenting the angular anisotropy of skin elasticity with high sensitivity and dynamic range using the Reviscometer® RVM 600 and its use to document changes in keratinocyte morphology elicited by topical application of a reversible antagonist to keratinocyte nicotinic acetylcholine receptors (nAChRs). The method is based on determining the directional dependence of the speed of an acoustic shear wave on the skin surface at intervals of 3°. Based on the angular distribution of the resonance running time, we define two parameters: the anisotropy and the width of the angular dispersion. The mechanical properties of the skin are not isotropic (uniform in all directions), and there is a need to assess this angular anisotropy. During development, from infancy to adolescence, skin is expected to respond to tension isotropically to accommodate for growth, while in adulthood this isotropic behavior regresses due to site-specific habituation to tension. We find that with increasing age the anisotropy increases while the angular dispersion width decreases. Changes in viable epidermis keratinocyte morphology and stratum corneum moisturization may be assessed and documented by these parameters. The ratio of these values provides a sensitive parameter for the assessment of the directional behavior of the skin mechanical properties. This parameter provides a large effective dynamic range capable of demonstrating close to an order of magnitude difference in skin viscoelasticity from infants up to 75 years of age and documenting efficacy of topical treatments. Furthermore, we show that the direction of the angular anisotropy relates to the direction of the dermal cleavage lines as defined by Langer, indicating that the anisotropy of the mechanical properties of skin stems from structural parameters. Based on these results, we conclude that the proposed methodology is able to capture accurately age-related and morphological changes in the skin of the mechanical properties and demonstrate a structure-function relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ASTM:

American Society for Testing and Material Standards

DMAE:

2-(Dimethylamino)ethanol

FWHM:

Full width at half maximum

IRHD:

International rubber hardness degree

RRT:

Resonance running time

References

  1. Elias PM (2005) Stratum corneum defensive functions: an integrated view. J Invest Dermatol 125:183–200

    PubMed  CAS  Google Scholar 

  2. Lanir Y (1986) Skin mechanics. In: Skalak R, Chien S (eds) Handbook of bioengineering. McGraw-Hill, New York, pp 11.11–11.24

    Google Scholar 

  3. Nizet JL, Pierard-Franchimont C, Pierard GE (2001) Influence of body posture and gravitational forces on shear wave propagation in the skin. Dermatology 202:177–180

    Article  PubMed  CAS  Google Scholar 

  4. Langer K (1861) Zur anatomie und Physiologie der Haut: I. Uber die Splatbarkeit der Cutis. Sitzungber Akad Wiss Wien 44:19–46

    Google Scholar 

  5. Cox H (1942) The cleavage lines of the skin. Br J Surg 29:234–240

    Article  Google Scholar 

  6. Gibson T, Stark H, Evans J (1969) Directional variation in extensibility of human skin in vivo. J Biomech 2:201–204

    Article  PubMed  Google Scholar 

  7. Takakuda K, Miyairi H (1996) Tensile behaviour of fibroblasts cultured in collagen gel. Biomaterials 17:1393–1397

    Article  PubMed  CAS  Google Scholar 

  8. Jansen L, Rottier PB (1957) Elasticity of human skin related to age. Dermatologica 115:106–111

    Article  PubMed  CAS  Google Scholar 

  9. Lavker RM, Zheng PS, Dong G (1987) Aged skin: a study by light, transmission electron, and scanning electron microscopy. J Invest Dermatol 88:44s–51s

    Article  PubMed  CAS  Google Scholar 

  10. Elsner P (1995) Skin elasticity. In: Bardesca E, Elsner P, Wilhelm K, Maibach H (eds) Bioengineering of the skin: methods and instrumentation. CRC Press, Boca Raton

    Google Scholar 

  11. Rodrigues L (2001) EEMCO guidance to the in vivo assessment of tensile functional properties of the skin. Part 2: instrumentation and test modes. Skin Pharmacol Appl Skin Physiol 14:52–67

    PubMed  CAS  Google Scholar 

  12. Serup J, Jemec G, Grove G (2006) Handbook of non-invasive methods and the skin. CRC Press, Boca Raton

    Book  Google Scholar 

  13. Dahlgren R, Elsnau W (1986) Measurement of skin condition by sonic velocity. J Soc Cosmet Chem 35:1–9

    Google Scholar 

  14. Davis BR, Bahniuk E, Young JK, Barnard CM, Mansour JM (1989) Age-dependent changes in the shear wave propagation through human skin. Exp Gerontol 24:201–210

    Article  PubMed  CAS  Google Scholar 

  15. Hermanns-Le T, Jonlet F, Scheen A, Pierard GE (2001) Age- and body mass index-related changes in cutaneous shear wave velocity. Exp Gerontol 36:363–372

    Article  PubMed  CAS  Google Scholar 

  16. Pereira JM, Mansour JM, Davis BR (1990) Analysis of shear wave propagation in skin; application to an experimental procedure. J Biomech 23:745–751

    Article  PubMed  CAS  Google Scholar 

  17. Vexler A, Polyansky I, Gorodetsky R (1999) Evaluation of skin viscoelasticity and anisotropy by measurement of speed of shear wave propagation with viscoelasticity skin analyzer. J Invest Dermatol 113:732–739

    Article  PubMed  CAS  Google Scholar 

  18. Varani J, Nickoloff BJ, Dixit VM, Mitra RS, Voorhees JJ (1989) All-trans retinoic acid stimulates growth of adult human keratinocytes cultured in growth factor-deficient medium, inhibits production of thrombospondin and fibronectin, and reduces adhesion. J Invest Dermatol 93:449–454

    Article  PubMed  CAS  Google Scholar 

  19. Berardesca E, Gabba P, Farinelle N, Borroni G, Rabbiosi G (1990) In vivo tretinoin-induced changes in skin mechanical properties. Br J Dermatol 122(4):525–529

    Article  PubMed  CAS  Google Scholar 

  20. Grando SA, Horton RM, Pereira EF, Diethelm-Okita BM, George PM, Albuquerque EX (1995) A nicotinic acetylcholine receptor regulating cell adhesion and motility is expressed in human Keratinocytes. J Invest Dermatol 105:774–781

    Article  PubMed  CAS  Google Scholar 

  21. Ruvolo E, Southall M, Bordoloi B, Lukenbach E, Lukenbach G (2009) Compositions for the treatment of signs of aging. US issued patent US20090292027 A1

    Google Scholar 

  22. Tronnier H (1980) Dermatologisch-phamakologische Methoden zur Prüfung kosmeticher Präparate und Grundstoffe. Ärzliche Kosmotogie 10:361–367

    Google Scholar 

  23. Kinsler LE, Frey AR, Coppens AB, Sanders JV (1999) Fundamentals of acoustics, 4th edn. John Wiley-Sons, Inc., New York

    Google Scholar 

  24. Potts RO, Chrisman DA, Burns EM (1983) The dynamic mechanical properties of human skin in vivo. J Biomech 16:365–372

    Article  PubMed  CAS  Google Scholar 

  25. Dorogi PL, DeWitt GM, Stone BR, Buras EM Jr (1986) Viscoelastometry of skin in vivo using shear wave propagation. Bioeng Skin 2:59–70

    Google Scholar 

  26. Mridha M, Odman S, Oberg PA (1992) Mechanical pulse wave propagation in gel, normal and oedematous tissues. J Biomech 25:1213–1218

    Article  PubMed  CAS  Google Scholar 

  27. Biscoe B, Sebastian K (1993) Analysis of the “durometer” indentation. Rubber Chem Technol 66:827–836

    Article  Google Scholar 

  28. ASTM (2003) D2240-03 Standard test method for rubber property—durometer hardness. ASTM International, West Conshohocken

    Google Scholar 

  29. Ruvolo EC Jr, Stamatas GN, Kollias N (2007) Skin viscoelasticity displays site- and age-dependent angular anisotropy. Skin Pharmacol Physiol 20:313–321

    Article  PubMed  Google Scholar 

  30. Rajadhyaksha M, González S, Zavislan JM, Anderson R, Webb RH (1999) In vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison with histology. J Invest Dermatol 113:293–303

    Article  PubMed  CAS  Google Scholar 

  31. Uhoda I, Faska N, Robert C, Cauwenbergh G, Pierard GE (2002) Split face study on the cutaneous tensile effect of 2-dimethylaminoethanol (deanol) gel. Skin Research and Technology 8:164–167

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Ruvolo Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Ruvolo, E., Kollias, N. (2014). Assessment of Mechanical Properties of Skin by Shearwave Propagation and Acoustic Dispersion. In: Berardesca, E., Maibach, H., Wilhelm, KP. (eds) Non Invasive Diagnostic Techniques in Clinical Dermatology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32109-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32109-2_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32108-5

  • Online ISBN: 978-3-642-32109-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics