Transillumination of highly scattering media by polarized light

  • Evgenii E. Gorodnichev
  • Sergei V. Ivliev
  • Alexander I. Kuzovlev
  • Dmitrii B. Rogozkin
Part of the Springer Praxis Books book series (PRAXIS)


Visualization of various objects hidden in highly scattering turbid media is one of the most general and important problems of modern statistical and biomedical optics. Significant interest in this field in the last two decades was stimulated by diagnostic applications [1–8]. The major difficulty encountered in imaging through these media is due to the multiple scattering effect. Multiple scattering leads to loss of directionality of the incident beam, resulting in the image blurring. There are several approaches to the problem of imaging through highly scattering media using infrared and visible light [1–8]. Some of them are concentrated on selecting ‘image bearing’ photons.


Multiple Scattering Linear Polarization Turbid Medium Polystyrene Microsphere Depolarization Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.C. Hebden, S.R. Arridge, and D.T. Delpy, Optical imaging in medicine: experimental techniques, Phys. Med. Biol., 42, pp. 825–840, 1997.CrossRefGoogle Scholar
  2. 2.
    S.R. Arridge and J.C. Hebden, Optical imaging in medicine: modeling and reconstruction, Phys. Med. Biol., 42, pp. 841–853, 1997.CrossRefGoogle Scholar
  3. 3.
    V.V. Tuchin, Coherence-domain methods in tissue and cell optics, Laser Phys., 8, pp. 807–849, 1998.Google Scholar
  4. 4.
    K. Michielsen, H. De Raedt, J. Przeslawski, and N. Garcia, Computer simulation of time-resolved optical imaging of objects hidden in turbid media, Phys. Rep., 304, pp. 89–144, 1998.CrossRefGoogle Scholar
  5. 5.
    V. Tuchin, L. Wang, and D. Zimnyakov, Optical Polarization in Biomedical Applications, Springer (2006).Google Scholar
  6. 6.
    S.R. Arridge and J.C. Schotland, Optical tomography: forward and inverse problems, Inverse Problems, 25, pp. 123010/1-59, 2009.Google Scholar
  7. 7.
    A.D. Klose, Radiative transfer of luminescence light in biological tissue, in Light Scattering Reviews, ed. A.A.Kokhanovsky, Springer-Praxis, pp. 293–345, 2009.Google Scholar
  8. 8.
    N. Ghosh and I.A. Vitkin, Tissue polarimetry: concepts, challenges, applications, and outlook, J. Biomed. Opt., 16, pp. 110801/1-29, 2011Google Scholar
  9. 9.
    B.B. Das and R.R. Alfano, Ultrafast time-gated approach in optical biomedical image, Current Science, Special Section: Biomedical Applications of Lasers, 77, pp. 885–892, 1999.Google Scholar
  10. 10.
    H. Horinaka, K. Hashimoto, K. Wada, and Y. Cho, Extraction of quasi-straightforward- propagating photons from diffused light transmitting through a scattering medium by polarization modulation, Opt. Lett., 20, pp. 1501–1503, 1995.CrossRefGoogle Scholar
  11. 11.
    S.G. Demos and R.R. Alfano, Temporal gating in highly scattering media by the degree of optical polarization, Opt. Lett., 21, pp. 161–163, 1996.CrossRefGoogle Scholar
  12. 12.
    O. Emile, F. Bretenaker, and A.L. Floch, Rotating polarization imaging in turbid media, Opt. Lett., 21, pp. 1706–1708, 1996.CrossRefGoogle Scholar
  13. 13.
    S.P. Morgan, M.P. Khong, and M.G. Somekh, Effects of polarization state and scatterer concentration on optical imaging through scattering media, Appl. Opt., 36, pp. 1560–1565, 1997.CrossRefGoogle Scholar
  14. 14.
    S.P. Schilders, X.S. Gan, and M. Gu, Resolution improvement in microscopic imaging through turbid media based on differential polarization gating, Appl. Opt., 37, pp. 4300–4302, 1997.CrossRefGoogle Scholar
  15. 15.
    S.P. Schilders, X.S. Gan, and M. Gu, Effect of scatterer size on microscopic imaging through turbid media based on differential polarization gating, Opt. Commun., 157, pp. 238–248, 1998.CrossRefGoogle Scholar
  16. 16.
    X.S. Gan, S.P. Schilders, and M. Gu, Image enhancement through turbid media under a microscope by use of polarization gating methods, JOSA, A16, pp. 2177–2184, 1999.Google Scholar
  17. 17.
    H. Ramachandran and A. Narayanan, Two-dimensional imaging through turbid media using a continuous wave light source, Opt. Commun., 154, pp. 255–260, 1998.CrossRefGoogle Scholar
  18. 18.
    V. Gopal, S. Mujumdar, H. Ramachandran, and A.K. Sood, Imaging in turbid media using quasi-ballistic photons, Opt. Commun., 170, pp. 331–345, 1999.CrossRefGoogle Scholar
  19. 19.
    J.S. Tyo, Enhancement of the point-spread function for imaging in scattering media by use of polarization-difference imaging, JOSA, A17, pp. 1–10, 2000.Google Scholar
  20. 20.
    D. Zimnyakov and Y.P. Sinichkin, A study of polarization decay as applied to improved imaging in scattering media, J. Opt. A: Pure and Appl. Opt., 2, pp. 200–208, 2000.CrossRefGoogle Scholar
  21. 21.
    M. Moscoso, J.B. Keller, and G. Papanicolaou, Depolarization and blurring of optical images by biological tissue, JOSA, A18, pp. 948–960, 2001.Google Scholar
  22. 22.
    S. Mujumdar and H. Ramachandran, Imaging through turbid media using polarization modulation: dependence on scattering anisotropy, Opt. Commun., 241, pp. 1–9, 2004.CrossRefGoogle Scholar
  23. 23.
    G. Yao, Differential optical polarization imaging in turbid media with different embedded objects, Opt. Commun., 241, pp. 255–261, 2004.CrossRefGoogle Scholar
  24. 24.
    P. Shukla, R. Sumathi, S. Gupta, and A. Pradhan, Influence of size parameter and refractive index on the scatterer on polarization-gated optical imaging through turbid media, JOSA, A24, pp. 1704–1713, 2007.Google Scholar
  25. 25.
    P. Shukla and A. Pradhan, Polarization-gated imaging in tissue phantoms: effect of size distribution, Appl. Opt., 48, pp. 6099–6104, 2009.CrossRefGoogle Scholar
  26. 26.
    P. Bruscaglioni, G. Zaccanti, and Q. Wei, Transmission of a pulsed polarized light beam through thick turbid media: numerical results, Appl. Opt., 32, pp. 6142–6150, 1993.CrossRefGoogle Scholar
  27. 27.
    X. Wang, L.V. Wang, C.W. Sun, and C.C. Yang, Polarized light propagation through scattering media: time-resolved Monte Carlo simulations and experiments, J. Biomed. Opt., 8, pp. 608–617, 2003.CrossRefGoogle Scholar
  28. 28.
    A. Ishimaru, S. Jaruwatanadilok, and Y. Kuga, Polarized pulse waves in random duscrete scatterers, Appl. Opt., 40, pp. 5495–5502, 2001.CrossRefGoogle Scholar
  29. 29.
    G. Mitic, J. Kolzer, J. Otto, E. Plies, G. Solkner, and W. Zinth, Time-gated transillumination of biological tissues and tissuelike phantoms, Appl. Opt., 33, pp. 6699–6710, 1994.CrossRefGoogle Scholar
  30. 30.
    D.J. Hall, J.C. Hebden, and D.T. Deply, Imaging very-low-contrast objects in breastlike scattering media with a time-resolved method, Appl. Opt., 36, pp. 7270–7276, 1997.CrossRefGoogle Scholar
  31. 31.
    L.C. Enfield, A.P. Gibson, N.L. Everdell, D.T. Delpy, M. Schweiger, S.R. Arridge, C. Richardson, M. Keshtgar, M. Douek, and J.C. Hebden, Three-dimensional timeresolved optical mammography of the uncompressed breast, Appl. Opt., 46, pp. 3628– 3638, 2007.CrossRefGoogle Scholar
  32. 32.
    V.G. Peters, D.R. Wyman, M.S. Patterson, and G.L. Frank, Optical properties of normal and diseased human breast tissues in visible and near infrared, Phys. Mod. Biol., 35, pp. 1317–1334, 1990.CrossRefGoogle Scholar
  33. 33.
    W.-F. Cheong, Summary of optical properties, in Optical-Thermal Response of Laser- Irradiated Tissue, A.J.Welch and M.J.C. van Gemert eds., Plenum, New York, pp. 275–303, 1995.Google Scholar
  34. 34.
    A. Ishimaru, Wave Propagation and Scattering in Random Media, Academic Press, New York, 1978.Google Scholar
  35. 35.
    C.F. Bohren and D.R. Hoffman, Absorption and Scattering of Light by Small Particles, Wiley, 1983.Google Scholar
  36. 36.
    M.I. Mishchenko, L.D. Travis, and A.A. Lacis, Multiple Scattering of Light by Particles, Cambridge University Press, Cambridge, 2006.Google Scholar
  37. 37.
    A.A. Kokhanovsky, Polarization Optics of Random Media, Praxis Publishing, 2003.Google Scholar
  38. 38.
    E.E. Gorodnichev, A.I. Kuzovlev, and D.B. Rogozkin, Depolarization of light in smallangle multiple scatteringin random media, Laser Phys., 9, pp. 1210–1227, 1999.Google Scholar
  39. 39.
    E.E. Gorodnichev, A.I. Kuzovlev, and D.B. Rogozkin, Multiple scattering of polarized light in turbid media with large particles, in Light Scattering Reviews, ed. A.A.Kokhanovsky, Springer-Praxis, pp. 291–337, 2006.Google Scholar
  40. 40.
    E.E. Gorodnichev, A.I. Kuzovlev, and D.B. Rogozkin, Depolarization of multiply scattered light in transmission through a turbid medium with large particles, Opt. Commun., 260, pp. 30–45, 2006.CrossRefGoogle Scholar
  41. 41.
    E.E. Gorodnichev, A.I. Kuzovlev, and D.B. Rogozkin, Multiple scattering of polarized light in a turbid medium, JETP, 104, pp. 319–341, 2007.CrossRefGoogle Scholar
  42. 42.
    I. Kuscer and M. Ribaric, Matrix formalism in the theory of diffusion of light, Opt. Acta, 6, pp. 42–51, 1959.CrossRefGoogle Scholar
  43. 43.
    E.P. Zege and L.I. Chaikovskaya, Approximate theory of linearly polarized light propagation through a scattering medium, JQSRT, 66, pp. 413–435, 2000.CrossRefGoogle Scholar
  44. 44.
    Yu.A. Kravtsov, Geometrical depolarization of light in a turbulent atmosphere, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 13, pp. 281–285, 1970.Google Scholar
  45. 45.
    Yu.A. Kravtsov and Yu.I. Orlov, Geometrical Optics of Inhomogeneous Media, Nauka, Moscow, 1980 [in Russian].Google Scholar
  46. 46.
    E.E. Gorodnichev, A.I. Kuzovlev, and D.B. Rogozkin, Diffusion of circularly polarized light in a disordered medium with large-scale inhomogeneities, JETP Lett., 68, pp. 22–28, 1998.CrossRefGoogle Scholar
  47. 47.
    V.V. Sobolev, Light Scattering in Planetary Atmospheres, Pergamon, Oxford, 1975.Google Scholar
  48. 48.
    R.D.M. Garcia and C.E. Siewert, A generalized spherical harmonics solution for radiative transfer models that include polarization effects, JQSRT, 36, pp. 401–423, 1986.CrossRefGoogle Scholar
  49. 49.
    W. Cai, M. Lax, and R.R. Alfano, Analytical solution of the polarized photon transport equation in an infinite uniform medium using cumulant expansion, Phys. Rev., E63, pp. 016606/1-10, 2000.Google Scholar
  50. 50.
    I.M. Gelfand, R.A. Minlos, and Z.Ya. Shapiro, Representations of the Rotation and Lorentz Groups and their Applications, Oxford, 1963.Google Scholar
  51. 51.
    F.C. MacKintosh, J.X. Zhu, D.J. Pine, and D.A. Weitz, Polarization memory of multiple scattering light, Phys. Rev., B40, pp. 9342–9345, 1989.Google Scholar
  52. 52.
    J.M. Schmitt, A.H. Gandjbakhche, and R.F. Bonner, Use of polarized light to discriminate short-path photons in a multiply scattering medium, Appl. Opt., 31, pp. 6535– 6546, 1992.CrossRefGoogle Scholar
  53. 53.
    D.Bicout, C.Brosseau, A.S.Martinez, and J.M.Schmitt, Depolarization of multiply scattered waves by spherical diffusers: influence of the size parameter, Phys. Rev., E49, pp. 1767–1770, 1994.Google Scholar
  54. 54.
    V. Sankaran, K. Schenenberger, J.T.Walsh, and D.J. Maitland, Polarization discrimination of coherently propagating light in turbid media, Appl. Opt., 38, pp. 4252–4261, 1999.CrossRefGoogle Scholar
  55. 55.
    V. Sankaran, M.J. Everett, D.J. Maitland, and J.T. Walsh, Comparison of polarizedlight propagation in biological tissue and phantoms, Opt. Lett., 24, pp. 1044–1046, 1999.CrossRefGoogle Scholar
  56. 56.
    V. Sankaran, J.T. Walsh, Jr., and J.D. Maitland, Comparative study of polarized light propagation in biological tissues, J. Biomed. Opt., 7, pp. 300–306, 2002.CrossRefGoogle Scholar
  57. 57.
    N. Ghosh, P.K. Gupta, H.S. Patel, B. Jain, and B.N. Singh, Depolarization of light in tissue phantoms-effect of collection geometry, Opt. Commun., 222, pp. 93–100, 2003.CrossRefGoogle Scholar
  58. 58.
    N. Ghosh, A. Pradhan, P.K. Gupta, S. Gupta, V. Jaiswal, and R.P. Singh, Depolarization of light in a multiply scattering medium: Effect of the refractive index of a scatterer, Phys. Rev., E70, pp. 066607/1-7, 2004.Google Scholar
  59. 59.
    X. Ni and R.R. Alfano, Time-resolved backscattering of circularly and linearly polarized light in a turbid medium, Opt. Lett., 29, pp. 2773–2775, 2004.CrossRefGoogle Scholar
  60. 60.
    M. Xu and R.R. Alfano, Circular polarization memory of light, Phys. Rev., E72, pp. 065601/1-4, 2005.Google Scholar
  61. 61.
    M. Xu and R.R. Alfano, Random walk of polarized light in turbid media, Phys. Rev. Lett., 95, pp. 213901/1-4, 2005.Google Scholar
  62. 62.
    N. Ghosh, P.K. Gupta, A. Pradhan, and S.K. Majumdar, Anomalous behaviour of depolarization of light in a turbid medium, Phys. Lett., A354, pp. 236–242, 2006.Google Scholar
  63. 63.
    D.B. Rogozkin, Light pulse beam propagation in anisotropically scattering medium, Izv. Acad. Sci. USSR, Atmos. Ocean. Phys., 23, pp. 275–281, 1987.Google Scholar
  64. 64.
    E.E. Gorodnichev, S.V. Ivliev, A.I. Kuzovlev, and D.B. Rogozkin, Depolarization of light in the pulse transmission through the medium with large inhomogeneities, Laser Phys., 20, pp. 2021–2028, 2010.CrossRefGoogle Scholar
  65. 65.
    E.E. Gorodnichev, S.V. Ivliev, A.I. Kuzovlev, and D.B. Rogozkin, Transmission of polarized light through turbid media, Optics and Spectroscopy, 110, pp. 586–594, 2011.CrossRefGoogle Scholar
  66. 66.
    E.E. Gorodnichev, S.V. Ivliev, A.I. Kuzovlev, and D.B. Rogozkin, Imaging through turbid media by polarized light , Laser Phys., 22, pp. 566–574, 2012.CrossRefGoogle Scholar
  67. 67.
    E.E. Gorodnichev, A.I. Kuzovlev, and D.B. Rogozkin, Propagation of circularly polarized light in media with large-scale inhomogeneities, JETP, 88, pp. 421–432, 1999.CrossRefGoogle Scholar
  68. 68.
    V.S. Remizovich, D.B. Rogozkin, and M.I. Ryazanov, Propagation of a light signal in a substance with large-scale random inhomogeneities with photon path-length fluctuations due to multiple scattering taken into account, Izv. Acad. Sci. USSR, Atmos. Ocean. Phys., 18, pp. 480–485, 1982.Google Scholar
  69. 69.
    V.S. Remizovich, D.B. Rogozkin, and M.I. Ryazanov, Propagation of a modulated narrow light beam in a scattering medium with allowance for photon-path fluctuations during multiple scattering, Radiophys. Quantum Electron., 25, pp. 639–645, 1982.CrossRefGoogle Scholar
  70. 70.
    A.D. Kim, Light propagation in biological tissues containing an absorbing plate, Appl.Opt., 43, pp. 555–563, 2004.CrossRefGoogle Scholar
  71. 71.
    P. Gonzalez-Rodriguez and A.D. Kim, Light propagation in tissues with forwardpeaked and large-angle scattering, Appl. Opt., pp. 2599–2609, 2008.Google Scholar
  72. 72.
    V.S. Remizovich, D.B. Rogozkin, and M.I. Ryazanov, Propagation of a light-flash signal in a turbid medium, Izv. Acad. Sci. USSR, Atmos. Ocean. Phys., 19, pp. 796– 801, 1983.Google Scholar
  73. 73.
    Handbook of Mathematical Functions, Abramowitz, M. and Stegun, I.A., Eds., New York: Dover, 1965.Google Scholar
  74. 74.
    N.G. Chen, J. Bai, Estimation of quasi-straightforward propagating light in tissues, Phys. Med. Biol., 44, pp. 1669–1676, 1999.CrossRefGoogle Scholar
  75. 75.
    D. Grosenick, H. Wabnitz, and H. Rinneberg, Time-resolved imaging of solid phantoms for optical mammography, Appl. Opt., 36, pp. 221–231, 1997.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Evgenii E. Gorodnichev
    • 1
  • Sergei V. Ivliev
    • 1
  • Alexander I. Kuzovlev
    • 1
  • Dmitrii B. Rogozkin
    • 1
  1. 1.Department of Theoretical PhysicsMoscow Engineering Physics InstituteMoscowRussia

Personalised recommendations