Abstract
Exact solutions and reasonable approximations of the optical properties of nonspherical particles in the atmosphere (particularly, coarse mode mineral dust particles, ice crystals within cirrus clouds, and aviation-induced contrails) are fundamental to numerous climate studies and remote sensing applications (Ch’ylek and Coakley, 1974; Haywood and Boucher, 2000; Ramanathan et al., 2001; Sokolik et al., 2001; Kaufman et al., 2002; Liou et al., 2000; Liou, 2002; Baum et al., 2005; Baran, 2009; Yang et al., 2010). The morphologies of realistic aerosols (Reid et al., 2003) and ice crystal habits (Heymsfield and Iaquinta, 2000) are extremely diverse. For simplicity, light scattering simulations reported in the literature are limited to a small set of well-defined nonspherical geometries such as hexagonal columns or plates, aggregates of columns or plates, bullet rosettes, circular cylinders, and ellipsoids (Asano and Yamamoto, 1975; Mishchenko and Travis, 1998; Yang et al., 2005; Bi et al., 2008; Meng et al., 2010; Xie et al., 2011).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Asano, S., and G. Yamamoto, 1975: Light scattering by randomly oriented spheroidal particles, Appl. Opt., 14, 29–49.
Baran, A., J., 2009: A review of the light scattering properties of cirrus, J. Quant. Spectrosc. Radiative Transfer, 110, 1239–1260.
Baum, B. A., P. Yang, A. J. Heymsfield, S. Platnick, M. D. King, Y. X. Hu, and S. M. Bedka, 2005: Bulk scattering properties for the remote sensing of ice clouds. II: Narrowband models, J. Appl. Meteor., 44, 1896–1911.
Bi, L., P. Yang, G. W. Kattawar, and R. Kahn, 2008: Single-scattering properties of triaxial ellipsoidal particles for a size parameter range from Rayleigh to geometric-optics regimes, Appl. Opt., 48, 114–126.
Bi, L., P. Yang, G. W. Kattawar, B. A. Baum, Y.-X. Hu, D. M. Winker, R. S. Brock, and J. Q. Lu, 2009: Simulation of the color ratio associated with the backscattering of radiation by ice crystals at the wavelengths of 0.532 and 1.064 μm, J. Geophys. Res., 114, D00H08, doi:10.1029/2009JD011759
Bi, L., P. Yang, G. W. Kattawar, and R. Kahn, 2010a: Modeling optical properties of mineral aerosol particles by using non-symmetric hexahedra, Appl. Opt., 49, 334–342.
Bi, L., P. Yang, and G. W. Kattawar, 2010b: Edge-effect contribution to the extinction of light by dielectric disk and cylindrical particles, Appl, Opt., 49, 4641–4646.
Bi, L., P. Yang, G. W. Kattawar, Y. Hu, and B. A. Baum, 2011a: Diffraction and external reflection by dielectric faceted particles, J. Quant. Spectrosc. Radiat. Transfer, 112, 163–173.
Bi, L., P. Yang, G. W. Kattawar, Y. Hu and B. A. Baum, 2011b: Scattering and absorption of light by ice particles: solution by a new physical-geometric optics hybrid method, J. Quant. Spectrosc. Radiat. Transfer, 112, 1492–1508.
Bohren, C. F., and D. R. Huffman, 1983: Absorptin and Scattering of Light by Small Particles, New York: John Wiley & Sons.
Born, M., and E. Wolf, 1959: Principles of Optics, Oxford: Pergamon Press.
Borovoi, A., I. Grishin, E. Naats, and U. Oppel, 2002: Light backscattering by hexagonal ice crystals, J. Quant. Spectrosc. Radiat. Transfer, 72, 403–417.
Borovoi, A. G., and I. A. Grishin, 2003: Scattering matrices for large ice crystal particles, J. Opt. Soc. Am. A., 20, 2071–2080.
Cai, Q., and K. N. Liou, 1982: Polarized light scattering by hexagonal ice crystals: theory, Appl. Opt., 21, 3569–3580.
Chang, P. C., J. G., Walker, and K. I. Hopcraft, 2005: Ray tracing in absorbing media, J. Quant. Spectrosc. Radiative Transfer, 96, 327–341.
Chen, G., P. Yang, and G. W. Kattawar, 2008: Application of the pseudospectral timedomain method to the scattering of light by nonspherical particles, J. Opt. Soc. Am. A., 25, 785–790.
Chýlek, P., and J. Coakley, 1974: Aerosols and climate, Science, 183, 75–77.
Coleman, R., and K. N. Liou, 1981: Light scattering by hexagonal ice crystals, J. Atmos. Sci., 38, 1260–1271.
Dubovik, O., B. N. Hilben, T. Lapyonok, A. Sinyuk, M. I. Mishchenko, P. Yang, and I. Slutsker, 2002: Non-spherical aerosols retrieval method employing light scattering by spheroids, Geophys. Res. Letter, 29, 541–544.
Dupertuis M. A., M. Proctor, and B. Acklin, 1994: Generalization of complex Snell–Descartes and Fresnel laws, J. Opt. Soc. Am. A., 11,1159–1166.
Fournier, G. R., and Evans, B. T., 1991: Approximations to extinction efficiency for randomly oriented spheroids, Appl. Opt., 30, 2042–2048.
Fu, Q., W. B. Sun, and P. Yang, 1999: Modeling of scattering and absorption by nonspherical cirrus ice partiles at thermal infrared wavelengths, J. Climat., 25, 223–2237.
Hage, J. I., J. M. Greenberg, and R. T. Wang, 1991: Scattering from arbitrary shaped particles: theory and experiment, Appl. Opt., 30, 1141–1152.
Hansen, J. E., and L. D. Travis, 1974: Light scattering in planetary atmospheres, Space Sci. Rev., 16, 527–610.
Haywood, J., and O. Boucher, 2000: Estimates of the direct and indirect radiative forcing due to troposphere aerosols: a review, Rev. Geophys., 38, 513–544.
Hess, M., and Wiegner, M., 1994: COP: a data library of optical properties of hexagonal ice crystals, Appl. Opt., 33, 7740–7746.
Heymsfield, A. J., and J. Iaquinta, 2000: Cirrus crystal terminal velocities, J. Atmos. Sci., 57, 916–938.
Jackson, J. D., 1999: Classical Electrodynamics, 3rd ed. New York: John Wiley & Sons.
Jacobowitz, H., 1971: A method for computing the transfer of solar radiation through clouds of hexagonal ice crystals, J. Quant. Spectrosc. Radiat. Transfer, 11, 691–695
Jones, D. S. 1957: High-frequency scattering of electromagnetic waves, Proceedings of the Royal Society of London Series A, 240, 206–213.
Kahnert, F. M., 2003: Numerical methods in electromagnetic scattering theory, J. Quant. Spectrosc. Radiat. Transfer, 79–80, 775–824.
Kahnert, F. M., J. J. Stamnes, and K. Stamnes, 2002: Using simple particle shapes to model the Stokes scattering matrix of ensembles of wavelength-sized particles with complex shapes: possibilities and limitations, J. Quant. Spectrosc. Radiat. Transfer, 74, 167–182.
Kalashnikova, O. V., and I. N. Sokolik, 2004: Modeling the radiative properties of nonspherical soil-derived mineral aerosols, J. Quant. Spectrosc. Radiat. Transfer, 87, 137–166.
Kaufman, Y. J., D. Tanre, and O. Boucher, 2002: A satellite view of aerosols in the climate system, Nature, 419, 215–222.
Kokhanovsky, A., 2003: Optical properties of irregularly shaped particles, J. Phys. D, 36, 915–923
Liou, K. N. 2002: An Introduction to Atmospheric Radiation, San Diego: Academic Press.
Liou, K. N., and J. E. Hansen, 1971: Intensity and polarization for single scattering by polydisperse spheres: a comparison of ray optics and Mie theory, J. Atmos. Sci., 28, 995–1004.
Liou, K. N., Y. Takano, and P. Yang, 2000: Light scattering and radiative transfer by ice crystal clouds: applications to climate research, in Light Scattering by Nonspherical Particles: Theory, Measurements, and Geophysical Applications, M. I. Mishchenko, J.W. Hovenier, and L. D. Travis (eds), pp. 417–449. San Diego: Academic Press.
Liou, K. N., Y. Takano, P. Yang, 2011: Light absorption and scattering by aggregates: application to black carbon and snow grains, J. Quant. Spectrosc. Radiat. Transfer, 112, 1581–1594.
Liu, Q. H., 1999: PML and PSTD algorithm for arbitrary lossy anisotropic media, IEEE Microw. Guid. Wave Lett., 9, 48–50.
Macke, A., 1993: Scattering of light by polyhedral ice crystals, Appl. Opt., 32, 2780–2788.
Macke, A., J. Mueller, and E. Raschke, 1996a: Single scattering properties of atmospheric ice crystal. J. Atmos. Sci., 53, 2813–2825.
Macke, A., M. I. Mishchenko, and B. Cains, 1996b: The influence of inclusions on light scattering by large ice particles, J. Geophys. Res., 101, 23,311–23,316.
Macke, A., and M. I. Mishchenko, 1996: Applicability of regular particle shapes in light scattering calculations for atmospheric ice particles, Appl. Opt., 35, 4291–4296.
Mazeron, P., and S. Muller, 1996: Light scattering by ellipsoids in a physical optics approximation, Appl. Opt., 35, 3726–3735.
Meng, Z. K., P. Yang, G. W. Kattawar, L. Bi, K. Liou and I. Laszlo, 2010, Single-scattering properties of tri-axial ellipsoidal mineral dust aerosols: A database for application to radiative transfer calculations, Aerosol Science, doi:10.1016/j.jaerosci.2010.02.008
Merikallio S, H. Lindqvist, T. Nousiainen, M. Kahnert, 2011: Modelling light scattering by mineral dust using spheroids: assessment of applicability, Atmos. Chem. Phys., 11, 5347–63,
Mishchenko, M. I., and A. Macke, 1998: Incorporation of physical optics effects and δ- function transmission, J. Geophys. Res., 103, 1799–1805.
Mishchenko, M. I., and A. Macke, 1999: How big should hexagonal ice crystals be to produce halos? Appl. Opt., 38, 1626–1629.
Mishchenko, M. I., and L. D. Travis, 1998: Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rota- tionally symmetry scatterers, J. Quant. Spectrosc. Radiat. Transfer, 60, 309–324.
Mishchenko, M. I., W. J. Wiscombe, J. W. Hovenier, and L. D. Travis, 2000: Overview of scattering by nonspherical particles, in Light Scattering by Nonspherical Particles: Theory, Measurements, and Geophysical Applications, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis (eds), pp. 29–60, San Diego: Academic Press.
Mishchenko, M. I., L. D. Travis, and A. A. Lacis, 2002: Scattering, Absorption, and Emission of Light by Small Particles. Cambridge, UK: Cambridge University Press.
Muinonen, K., 1989: Scattering of light by crystals: a modified Kirchhoff approximation. Appl. Opt., 28, 3044–3050.
Muinonen, K., L. Lamberg, P. Fast, and K. Lumme, 1997: Ray optics regime for Gaussian random spheres, J. Quant. Spectrosc. Radiat. Transfer, 57, 197–205.
Nousiainen, T., 2009: Optical modeling of mineral dust particles: A review. J. Quant. Spectrosc. Radiat. Transfer, 110, 1261–1279, doi:10.1016/j.jqsrt.2009.03.002.
Nussenzveig, H. M., 1992: Diffraction Effects in Semicalssical Scattering, Cambridge, UK: Cambridge University Press.
Popov A. A., 1996: New method for calculating the characteristics of light scattering by spatially oriented atmospheric crystals, Proc SPIE, 2822, 186–194.
Priezzhev, A. V., S. Yu. Nikitin, and A. E. Lugovtsov, 2009: Ray-wave approximation for the calculation of laser light scattering by transparent dielectric particles, mimicking red blood cells or their aggregates, J. Quant. Spectrosc. Radiat. Transfer, 110, 1535–1544.
Purcell, E. M., and C. R. Pennypacker, 1973: Scattering and absorption of light by nonspherical dielectric grains, Astrophys. J., 186, 705–714.
Ramanathan, V., P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld, 2001: Aerosols, climate, and the hydrological cycle, Science, 294, 2119–2124.
Ravey, J. C., and P. Mazeron, 1982: Light scattering in the physical optics approximation: application to large spheroids, J. Opt. (Paris), 13, 273–282.
Reid, E. A., J. S. Reid, M. M. Meier, M. R. Dunlap, S. S. Cliff, A. Broumas, K. Perry, and H. Maring, 2003: Characterization of African dust transported to Puerto Rico by individual particle and size segregated bulk analysis. Journal of Geophysical Research– Atmospheres, 108, 85–91.
Saxon, D. S., Lectures on the scattering of light, in Proceedings of the UCLA Inter- national Conference on Radiation and Remote Sensing of the Atmosphere, J. G. Kuriyan (ed.), pp. 227–308. Western Periodicals, North Hollywood, CA.
Sokolik, I.N., D. Winker, G. Bergametti, D. Gillette, G. Carmichael, Y. J. Kaufman, L. Gomes, L. Schuetz, and J. Penner, 2001: Introduction to special section on mineral dust: outstanding problems in quantifying the radiative impact of mineral dust, J. Geophys. Res., 106, 18015–18027.
Sun, W., Q. Fu, and Z. Chen, 1999: Finite-difference time-domain solution of light scattering by dielectric particles with perfectly matched layer absorbing boundary conditions, Appl. Opt., 38, 3141–3151.
Takano, Y., and K. Jayaweera, 1985: Scattering phase matrix for hexagonal ice crystals computed from ray optics, Appl. Opt., 24, 3254–3263.
Takano, Y., and K. N., Liou, 1989: Solar radiative transfer in cirrus clouds. Part I. Singlescattering and optical properties of hexagonal ice crystals, J. Atmos. Sci., 46, 3–19.
Takano, Y., and K. N. Liou, 1995: Radiative transfer in cirrus clouds. Part III: Light scattering by irregular ice crystals, J. Atmos. Sci., 52, 818–837.
Tian, B., and Q. H. Liu, 2000: Nonuniform fast cosine transform and Chebyshev PSTD algorithm, Prog. Electromagn. Res., 28, 259–279.
van de Hulst, H. C., 1981: Light Scattering by Small Particles, New York: Dover.
Volten, H., O. Mu˜noz, J. W. Hovenier, and L. B. F. M. Waters, 2006: An update of the Amsterdam light scattering database, J. Quant. Spectrosc. Radiat. Transfer, 100, 437–443.
Warren, S. G., and R. E. Brandt, 2008: Optical constants of ice from the ultraviolet to the microwave: A revised compilation, J. Geophys. Res., 113, D14220, doi:10.1029/2007JD009744.
Wendling, P., R. Wendling, and H. K. Weickmann, 1979: Scattering of solar radiation by hexagonal ice crystals, Appl. Opt., 18, 2663–2671.
Xie, Y., P. Yang, G. W. Kattawar, B. A. Baum, and Y. Hu, 2011: Simulation of the optical properties of plate aggregates for application to the remote sensing of cirrus clouds, Appl. Opt., 50, 1065–1081.
Yang, P., and K. N. Liou, 1996a: Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space, J. Opt. Soc. Am. A, 13, 2072–2085
Yang, P., and K. N. Liou, 1996b: Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals, Appl. Opt., 35(33), 6568–6584.
Yang, P., and K. N. Liou, 1997: Light scattering by hexagonal ice crystals: solution by a ray-by-ray integration algorithm, J. Opt. Soc. Amer. A., 14, 2278–2288.
Yang, P., and K. N. Liou, 1998: Single-scattering properties of complex ice crystals in terrestrial atmosphere, Contr. Atmos. Phys., 71, 223–248.
Yang, P., B.-C. Gao, B. A. Baum, W. Wiscombe, M. I. Mischenko, D. M. Winker, and S. L. Nasiri, 2001: Asymptotic solutions of optical properties of large particles with strong absorption, Appl. Opt., 40, 1532–1547.
Yang, P., B. A. Baum, A. J. Heymsfield, Y. X. Hu, H.-L. Huang, S.-Chee Tsay, and S. Ackerman, 2003: Single-scattering properties of droxtals, J. Quant. Spectrosc. Radiat. Transfer, 79–80, 1159-1180.
Yang, P., H. L. Wei, H. L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu, 2005: Scattering and absorption property database for non spherical ice particles in the near- through far-infrared spectral region, Appl. Opt., 44(26), 5512–5523.
Yang, P. and K. N. Liou, 2006: Light scattering and absorption by nonspherical ice crystals, in Light Scattering Reviews: Single and Multiple Light Scattering,, edited by A. A. Kokhanovsky, Springer-Praxis, pp. 31–71.
Yang, P., Q. Feng, G. Hong, G. W. Kattawar, W. J. Wiscombe, M. I. Mishchenko, O. Dubovik, I. Laszlo, and I. N. Sokolik, 2007, Modeling of the scattering and radiative properties of nonspherical dust particles, J. Aerosol. Sci., 38, 995–1014.
Yang, P., and K. N. Liou, 2009a: Effective refractive index for determining ray propagation in an absorbing dielectric particle, J. Quant. Spectrosc. Radiat. Transfer, 110, 300–306.
Yang, P., and K. N. Liou, 2009b: An ‘exact’ geometric-optics approach for computing the optical properties of large absorbing particles, J. Quant. Spectrosc. Radiat. Transfer, 110, 1162–1177.
Yang, P., G. Hong, A. Dessler, S. S. C. Ou, K.-N. Liou, P. Minnis, and Harshvardhan, 2010: Contrails and induced cirrus – Optics and radiation, Bull. Amer. Meteorol. Soc., 90, 473–478.
Yee, S.K., 1966: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Trans. Antennas Propag., 14, 302–307.
Yi, B., C. N. Hsu, P. Yang, and S.-H. Tsay, 2011: Radiative transfer simulation of dust-like aerosols: Uncertainties from particle shape and refractive index, J. Aerosol. Sci., 42, 631–644.
Yurkin, M.A. and A. G. Hoekstra, 2011: The discrete-dipole-approximation code ADDA: capabilities and known limitations, J. Quant. Spectrosc. Radiat. Transfer, 112, 2234–2247.
Zhang, Z., P. Yang, G.W. Kattawar, S.-C. Tsay. B. A. Baum, H.-L. Huang, Y. X. Hu, A. J. Heymsfield, and J. Reichardt, 2004: Geometrical-optics solution to light scattering by droxtal ice crystals, Appl. Opt., 43, 2490–2499.
Zhou, C., P. Yang, A. E. Dessler, Y.-X. Hu, and B. A. Baum, 2012: Study of horizontally oriented ice crystals with CALIPSO observations and comparison with Monte Carlo radiative transfer simulations, J. Appl. Meteor. Climatol., 51, 1426–1439.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Bi, L., Yang, P. (2013). Physical-geometric optics hybrid methods for computing the scattering and absorption properties of ice crystals and dust aerosols. In: Kokhanovsky, A. (eds) Light Scattering Reviews 8. Springer Praxis Books(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32106-1_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-32106-1_2
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32105-4
Online ISBN: 978-3-642-32106-1
eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)