Skip to main content

Physical-geometric optics hybrid methods for computing the scattering and absorption properties of ice crystals and dust aerosols

  • Chapter
  • First Online:
Light Scattering Reviews 8

Part of the book series: Springer Praxis Books ((ENVIRONSCI))

Abstract

Exact solutions and reasonable approximations of the optical properties of nonspherical particles in the atmosphere (particularly, coarse mode mineral dust particles, ice crystals within cirrus clouds, and aviation-induced contrails) are fundamental to numerous climate studies and remote sensing applications (Ch’ylek and Coakley, 1974; Haywood and Boucher, 2000; Ramanathan et al., 2001; Sokolik et al., 2001; Kaufman et al., 2002; Liou et al., 2000; Liou, 2002; Baum et al., 2005; Baran, 2009; Yang et al., 2010). The morphologies of realistic aerosols (Reid et al., 2003) and ice crystal habits (Heymsfield and Iaquinta, 2000) are extremely diverse. For simplicity, light scattering simulations reported in the literature are limited to a small set of well-defined nonspherical geometries such as hexagonal columns or plates, aggregates of columns or plates, bullet rosettes, circular cylinders, and ellipsoids (Asano and Yamamoto, 1975; Mishchenko and Travis, 1998; Yang et al., 2005; Bi et al., 2008; Meng et al., 2010; Xie et al., 2011).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Asano, S., and G. Yamamoto, 1975: Light scattering by randomly oriented spheroidal particles, Appl. Opt., 14, 29–49.

    Google Scholar 

  • Baran, A., J., 2009: A review of the light scattering properties of cirrus, J. Quant. Spectrosc. Radiative Transfer, 110, 1239–1260.

    Google Scholar 

  • Baum, B. A., P. Yang, A. J. Heymsfield, S. Platnick, M. D. King, Y. X. Hu, and S. M. Bedka, 2005: Bulk scattering properties for the remote sensing of ice clouds. II: Narrowband models, J. Appl. Meteor., 44, 1896–1911.

    Google Scholar 

  • Bi, L., P. Yang, G. W. Kattawar, and R. Kahn, 2008: Single-scattering properties of triaxial ellipsoidal particles for a size parameter range from Rayleigh to geometric-optics regimes, Appl. Opt., 48, 114–126.

    Article  Google Scholar 

  • Bi, L., P. Yang, G. W. Kattawar, B. A. Baum, Y.-X. Hu, D. M. Winker, R. S. Brock, and J. Q. Lu, 2009: Simulation of the color ratio associated with the backscattering of radiation by ice crystals at the wavelengths of 0.532 and 1.064 μm, J. Geophys. Res., 114, D00H08, doi:10.1029/2009JD011759

  • Bi, L., P. Yang, G. W. Kattawar, and R. Kahn, 2010a: Modeling optical properties of mineral aerosol particles by using non-symmetric hexahedra, Appl. Opt., 49, 334–342.

    Article  Google Scholar 

  • Bi, L., P. Yang, and G. W. Kattawar, 2010b: Edge-effect contribution to the extinction of light by dielectric disk and cylindrical particles, Appl, Opt., 49, 4641–4646.

    Google Scholar 

  • Bi, L., P. Yang, G. W. Kattawar, Y. Hu, and B. A. Baum, 2011a: Diffraction and external reflection by dielectric faceted particles, J. Quant. Spectrosc. Radiat. Transfer, 112, 163–173.

    Article  Google Scholar 

  • Bi, L., P. Yang, G. W. Kattawar, Y. Hu and B. A. Baum, 2011b: Scattering and absorption of light by ice particles: solution by a new physical-geometric optics hybrid method, J. Quant. Spectrosc. Radiat. Transfer, 112, 1492–1508.

    Article  Google Scholar 

  • Bohren, C. F., and D. R. Huffman, 1983: Absorptin and Scattering of Light by Small Particles, New York: John Wiley & Sons.

    Google Scholar 

  • Born, M., and E. Wolf, 1959: Principles of Optics, Oxford: Pergamon Press.

    Google Scholar 

  • Borovoi, A., I. Grishin, E. Naats, and U. Oppel, 2002: Light backscattering by hexagonal ice crystals, J. Quant. Spectrosc. Radiat. Transfer, 72, 403–417.

    Article  Google Scholar 

  • Borovoi, A. G., and I. A. Grishin, 2003: Scattering matrices for large ice crystal particles, J. Opt. Soc. Am. A., 20, 2071–2080.

    Article  Google Scholar 

  • Cai, Q., and K. N. Liou, 1982: Polarized light scattering by hexagonal ice crystals: theory, Appl. Opt., 21, 3569–3580.

    Article  Google Scholar 

  • Chang, P. C., J. G., Walker, and K. I. Hopcraft, 2005: Ray tracing in absorbing media, J. Quant. Spectrosc. Radiative Transfer, 96, 327–341.

    Google Scholar 

  • Chen, G., P. Yang, and G. W. Kattawar, 2008: Application of the pseudospectral timedomain method to the scattering of light by nonspherical particles, J. Opt. Soc. Am. A., 25, 785–790.

    Article  Google Scholar 

  • Chýlek, P., and J. Coakley, 1974: Aerosols and climate, Science, 183, 75–77.

    Google Scholar 

  • Coleman, R., and K. N. Liou, 1981: Light scattering by hexagonal ice crystals, J. Atmos. Sci., 38, 1260–1271.

    Article  Google Scholar 

  • Dubovik, O., B. N. Hilben, T. Lapyonok, A. Sinyuk, M. I. Mishchenko, P. Yang, and I. Slutsker, 2002: Non-spherical aerosols retrieval method employing light scattering by spheroids, Geophys. Res. Letter, 29, 541–544.

    Article  Google Scholar 

  • Dupertuis M. A., M. Proctor, and B. Acklin, 1994: Generalization of complex Snell–Descartes and Fresnel laws, J. Opt. Soc. Am. A., 11,1159–1166.

    Article  Google Scholar 

  • Fournier, G. R., and Evans, B. T., 1991: Approximations to extinction efficiency for randomly oriented spheroids, Appl. Opt., 30, 2042–2048.

    Article  Google Scholar 

  • Fu, Q., W. B. Sun, and P. Yang, 1999: Modeling of scattering and absorption by nonspherical cirrus ice partiles at thermal infrared wavelengths, J. Climat., 25, 223–2237.

    Google Scholar 

  • Hage, J. I., J. M. Greenberg, and R. T. Wang, 1991: Scattering from arbitrary shaped particles: theory and experiment, Appl. Opt., 30, 1141–1152.

    Article  Google Scholar 

  • Hansen, J. E., and L. D. Travis, 1974: Light scattering in planetary atmospheres, Space Sci. Rev., 16, 527–610.

    Google Scholar 

  • Haywood, J., and O. Boucher, 2000: Estimates of the direct and indirect radiative forcing due to troposphere aerosols: a review, Rev. Geophys., 38, 513–544.

    Article  Google Scholar 

  • Hess, M., and Wiegner, M., 1994: COP: a data library of optical properties of hexagonal ice crystals, Appl. Opt., 33, 7740–7746.

    Article  Google Scholar 

  • Heymsfield, A. J., and J. Iaquinta, 2000: Cirrus crystal terminal velocities, J. Atmos. Sci., 57, 916–938.

    Article  Google Scholar 

  • Jackson, J. D., 1999: Classical Electrodynamics, 3rd ed. New York: John Wiley & Sons.

    Google Scholar 

  • Jacobowitz, H., 1971: A method for computing the transfer of solar radiation through clouds of hexagonal ice crystals, J. Quant. Spectrosc. Radiat. Transfer, 11, 691–695

    Article  Google Scholar 

  • Jones, D. S. 1957: High-frequency scattering of electromagnetic waves, Proceedings of the Royal Society of London Series A, 240, 206–213.

    Article  Google Scholar 

  • Kahnert, F. M., 2003: Numerical methods in electromagnetic scattering theory, J. Quant. Spectrosc. Radiat. Transfer, 79–80, 775–824.

    Article  Google Scholar 

  • Kahnert, F. M., J. J. Stamnes, and K. Stamnes, 2002: Using simple particle shapes to model the Stokes scattering matrix of ensembles of wavelength-sized particles with complex shapes: possibilities and limitations, J. Quant. Spectrosc. Radiat. Transfer, 74, 167–182.

    Article  Google Scholar 

  • Kalashnikova, O. V., and I. N. Sokolik, 2004: Modeling the radiative properties of nonspherical soil-derived mineral aerosols, J. Quant. Spectrosc. Radiat. Transfer, 87, 137–166.

    Article  Google Scholar 

  • Kaufman, Y. J., D. Tanre, and O. Boucher, 2002: A satellite view of aerosols in the climate system, Nature, 419, 215–222.

    Article  Google Scholar 

  • Kokhanovsky, A., 2003: Optical properties of irregularly shaped particles, J. Phys. D, 36, 915–923

    Article  Google Scholar 

  • Liou, K. N. 2002: An Introduction to Atmospheric Radiation, San Diego: Academic Press.

    Google Scholar 

  • Liou, K. N., and J. E. Hansen, 1971: Intensity and polarization for single scattering by polydisperse spheres: a comparison of ray optics and Mie theory, J. Atmos. Sci., 28, 995–1004.

    Article  Google Scholar 

  • Liou, K. N., Y. Takano, and P. Yang, 2000: Light scattering and radiative transfer by ice crystal clouds: applications to climate research, in Light Scattering by Nonspherical Particles: Theory, Measurements, and Geophysical Applications, M. I. Mishchenko, J.W. Hovenier, and L. D. Travis (eds), pp. 417–449. San Diego: Academic Press.

    Google Scholar 

  • Liou, K. N., Y. Takano, P. Yang, 2011: Light absorption and scattering by aggregates: application to black carbon and snow grains, J. Quant. Spectrosc. Radiat. Transfer, 112, 1581–1594.

    Article  Google Scholar 

  • Liu, Q. H., 1999: PML and PSTD algorithm for arbitrary lossy anisotropic media, IEEE Microw. Guid. Wave Lett., 9, 48–50.

    Article  Google Scholar 

  • Macke, A., 1993: Scattering of light by polyhedral ice crystals, Appl. Opt., 32, 2780–2788.

    Article  Google Scholar 

  • Macke, A., J. Mueller, and E. Raschke, 1996a: Single scattering properties of atmospheric ice crystal. J. Atmos. Sci., 53, 2813–2825.

    Article  Google Scholar 

  • Macke, A., M. I. Mishchenko, and B. Cains, 1996b: The influence of inclusions on light scattering by large ice particles, J. Geophys. Res., 101, 23,311–23,316.

    Article  Google Scholar 

  • Macke, A., and M. I. Mishchenko, 1996: Applicability of regular particle shapes in light scattering calculations for atmospheric ice particles, Appl. Opt., 35, 4291–4296.

    Article  Google Scholar 

  • Mazeron, P., and S. Muller, 1996: Light scattering by ellipsoids in a physical optics approximation, Appl. Opt., 35, 3726–3735.

    Article  Google Scholar 

  • Meng, Z. K., P. Yang, G. W. Kattawar, L. Bi, K. Liou and I. Laszlo, 2010, Single-scattering properties of tri-axial ellipsoidal mineral dust aerosols: A database for application to radiative transfer calculations, Aerosol Science, doi:10.1016/j.jaerosci.2010.02.008

    Google Scholar 

  • Merikallio S, H. Lindqvist, T. Nousiainen, M. Kahnert, 2011: Modelling light scattering by mineral dust using spheroids: assessment of applicability, Atmos. Chem. Phys., 11, 5347–63,

    Article  Google Scholar 

  • Mishchenko, M. I., and A. Macke, 1998: Incorporation of physical optics effects and δ- function transmission, J. Geophys. Res., 103, 1799–1805.

    Article  Google Scholar 

  • Mishchenko, M. I., and A. Macke, 1999: How big should hexagonal ice crystals be to produce halos? Appl. Opt., 38, 1626–1629.

    Article  Google Scholar 

  • Mishchenko, M. I., and L. D. Travis, 1998: Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rota- tionally symmetry scatterers, J. Quant. Spectrosc. Radiat. Transfer, 60, 309–324.

    Article  Google Scholar 

  • Mishchenko, M. I., W. J. Wiscombe, J. W. Hovenier, and L. D. Travis, 2000: Overview of scattering by nonspherical particles, in Light Scattering by Nonspherical Particles: Theory, Measurements, and Geophysical Applications, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis (eds), pp. 29–60, San Diego: Academic Press.

    Google Scholar 

  • Mishchenko, M. I., L. D. Travis, and A. A. Lacis, 2002: Scattering, Absorption, and Emission of Light by Small Particles. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Muinonen, K., 1989: Scattering of light by crystals: a modified Kirchhoff approximation. Appl. Opt., 28, 3044–3050.

    Article  Google Scholar 

  • Muinonen, K., L. Lamberg, P. Fast, and K. Lumme, 1997: Ray optics regime for Gaussian random spheres, J. Quant. Spectrosc. Radiat. Transfer, 57, 197–205.

    Article  Google Scholar 

  • Nousiainen, T., 2009: Optical modeling of mineral dust particles: A review. J. Quant. Spectrosc. Radiat. Transfer, 110, 1261–1279, doi:10.1016/j.jqsrt.2009.03.002.

    Article  Google Scholar 

  • Nussenzveig, H. M., 1992: Diffraction Effects in Semicalssical Scattering, Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Popov A. A., 1996: New method for calculating the characteristics of light scattering by spatially oriented atmospheric crystals, Proc SPIE, 2822, 186–194.

    Article  Google Scholar 

  • Priezzhev, A. V., S. Yu. Nikitin, and A. E. Lugovtsov, 2009: Ray-wave approximation for the calculation of laser light scattering by transparent dielectric particles, mimicking red blood cells or their aggregates, J. Quant. Spectrosc. Radiat. Transfer, 110, 1535–1544.

    Article  Google Scholar 

  • Purcell, E. M., and C. R. Pennypacker, 1973: Scattering and absorption of light by nonspherical dielectric grains, Astrophys. J., 186, 705–714.

    Article  Google Scholar 

  • Ramanathan, V., P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld, 2001: Aerosols, climate, and the hydrological cycle, Science, 294, 2119–2124.

    Article  Google Scholar 

  • Ravey, J. C., and P. Mazeron, 1982: Light scattering in the physical optics approximation: application to large spheroids, J. Opt. (Paris), 13, 273–282.

    Article  Google Scholar 

  • Reid, E. A., J. S. Reid, M. M. Meier, M. R. Dunlap, S. S. Cliff, A. Broumas, K. Perry, and H. Maring, 2003: Characterization of African dust transported to Puerto Rico by individual particle and size segregated bulk analysis. Journal of Geophysical Research– Atmospheres, 108, 85–91.

    Google Scholar 

  • Saxon, D. S., Lectures on the scattering of light, in Proceedings of the UCLA Inter- national Conference on Radiation and Remote Sensing of the Atmosphere, J. G. Kuriyan (ed.), pp. 227–308. Western Periodicals, North Hollywood, CA.

    Google Scholar 

  • Sokolik, I.N., D. Winker, G. Bergametti, D. Gillette, G. Carmichael, Y. J. Kaufman, L. Gomes, L. Schuetz, and J. Penner, 2001: Introduction to special section on mineral dust: outstanding problems in quantifying the radiative impact of mineral dust, J. Geophys. Res., 106, 18015–18027.

    Article  Google Scholar 

  • Sun, W., Q. Fu, and Z. Chen, 1999: Finite-difference time-domain solution of light scattering by dielectric particles with perfectly matched layer absorbing boundary conditions, Appl. Opt., 38, 3141–3151.

    Article  Google Scholar 

  • Takano, Y., and K. Jayaweera, 1985: Scattering phase matrix for hexagonal ice crystals computed from ray optics, Appl. Opt., 24, 3254–3263.

    Article  Google Scholar 

  • Takano, Y., and K. N., Liou, 1989: Solar radiative transfer in cirrus clouds. Part I. Singlescattering and optical properties of hexagonal ice crystals, J. Atmos. Sci., 46, 3–19.

    Google Scholar 

  • Takano, Y., and K. N. Liou, 1995: Radiative transfer in cirrus clouds. Part III: Light scattering by irregular ice crystals, J. Atmos. Sci., 52, 818–837.

    Google Scholar 

  • Tian, B., and Q. H. Liu, 2000: Nonuniform fast cosine transform and Chebyshev PSTD algorithm, Prog. Electromagn. Res., 28, 259–279.

    Article  Google Scholar 

  • van de Hulst, H. C., 1981: Light Scattering by Small Particles, New York: Dover.

    Google Scholar 

  • Volten, H., O. MuËœnoz, J. W. Hovenier, and L. B. F. M. Waters, 2006: An update of the Amsterdam light scattering database, J. Quant. Spectrosc. Radiat. Transfer, 100, 437–443.

    Google Scholar 

  • Warren, S. G., and R. E. Brandt, 2008: Optical constants of ice from the ultraviolet to the microwave: A revised compilation, J. Geophys. Res., 113, D14220, doi:10.1029/2007JD009744.

    Article  Google Scholar 

  • Wendling, P., R. Wendling, and H. K. Weickmann, 1979: Scattering of solar radiation by hexagonal ice crystals, Appl. Opt., 18, 2663–2671.

    Article  Google Scholar 

  • Xie, Y., P. Yang, G. W. Kattawar, B. A. Baum, and Y. Hu, 2011: Simulation of the optical properties of plate aggregates for application to the remote sensing of cirrus clouds, Appl. Opt., 50, 1065–1081.

    Article  Google Scholar 

  • Yang, P., and K. N. Liou, 1996a: Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space, J. Opt. Soc. Am. A, 13, 2072–2085

    Article  Google Scholar 

  • Yang, P., and K. N. Liou, 1996b: Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals, Appl. Opt., 35(33), 6568–6584.

    Article  Google Scholar 

  • Yang, P., and K. N. Liou, 1997: Light scattering by hexagonal ice crystals: solution by a ray-by-ray integration algorithm, J. Opt. Soc. Amer. A., 14, 2278–2288.

    Article  Google Scholar 

  • Yang, P., and K. N. Liou, 1998: Single-scattering properties of complex ice crystals in terrestrial atmosphere, Contr. Atmos. Phys., 71, 223–248.

    Google Scholar 

  • Yang, P., B.-C. Gao, B. A. Baum, W. Wiscombe, M. I. Mischenko, D. M. Winker, and S. L. Nasiri, 2001: Asymptotic solutions of optical properties of large particles with strong absorption, Appl. Opt., 40, 1532–1547.

    Article  Google Scholar 

  • Yang, P., B. A. Baum, A. J. Heymsfield, Y. X. Hu, H.-L. Huang, S.-Chee Tsay, and S. Ackerman, 2003: Single-scattering properties of droxtals, J. Quant. Spectrosc. Radiat. Transfer, 79–80, 1159-1180.

    Google Scholar 

  • Yang, P., H. L. Wei, H. L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu, 2005: Scattering and absorption property database for non spherical ice particles in the near- through far-infrared spectral region, Appl. Opt., 44(26), 5512–5523.

    Article  Google Scholar 

  • Yang, P. and K. N. Liou, 2006: Light scattering and absorption by nonspherical ice crystals, in Light Scattering Reviews: Single and Multiple Light Scattering,, edited by A. A. Kokhanovsky, Springer-Praxis, pp. 31–71.

    Google Scholar 

  • Yang, P., Q. Feng, G. Hong, G. W. Kattawar, W. J. Wiscombe, M. I. Mishchenko, O. Dubovik, I. Laszlo, and I. N. Sokolik, 2007, Modeling of the scattering and radiative properties of nonspherical dust particles, J. Aerosol. Sci., 38, 995–1014.

    Article  Google Scholar 

  • Yang, P., and K. N. Liou, 2009a: Effective refractive index for determining ray propagation in an absorbing dielectric particle, J. Quant. Spectrosc. Radiat. Transfer, 110, 300–306.

    Article  Google Scholar 

  • Yang, P., and K. N. Liou, 2009b: An ‘exact’ geometric-optics approach for computing the optical properties of large absorbing particles, J. Quant. Spectrosc. Radiat. Transfer, 110, 1162–1177.

    Article  Google Scholar 

  • Yang, P., G. Hong, A. Dessler, S. S. C. Ou, K.-N. Liou, P. Minnis, and Harshvardhan, 2010: Contrails and induced cirrus – Optics and radiation, Bull. Amer. Meteorol. Soc., 90, 473–478.

    Google Scholar 

  • Yee, S.K., 1966: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Trans. Antennas Propag., 14, 302–307.

    Google Scholar 

  • Yi, B., C. N. Hsu, P. Yang, and S.-H. Tsay, 2011: Radiative transfer simulation of dust-like aerosols: Uncertainties from particle shape and refractive index, J. Aerosol. Sci., 42, 631–644.

    Article  Google Scholar 

  • Yurkin, M.A. and A. G. Hoekstra, 2011: The discrete-dipole-approximation code ADDA: capabilities and known limitations, J. Quant. Spectrosc. Radiat. Transfer, 112, 2234–2247.

    Article  Google Scholar 

  • Zhang, Z., P. Yang, G.W. Kattawar, S.-C. Tsay. B. A. Baum, H.-L. Huang, Y. X. Hu, A. J. Heymsfield, and J. Reichardt, 2004: Geometrical-optics solution to light scattering by droxtal ice crystals, Appl. Opt., 43, 2490–2499.

    Article  Google Scholar 

  • Zhou, C., P. Yang, A. E. Dessler, Y.-X. Hu, and B. A. Baum, 2012: Study of horizontally oriented ice crystals with CALIPSO observations and comparison with Monte Carlo radiative transfer simulations, J. Appl. Meteor. Climatol., 51, 1426–1439.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Bi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bi, L., Yang, P. (2013). Physical-geometric optics hybrid methods for computing the scattering and absorption properties of ice crystals and dust aerosols. In: Kokhanovsky, A. (eds) Light Scattering Reviews 8. Springer Praxis Books(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32106-1_2

Download citation

Publish with us

Policies and ethics