Advertisement

Dependence of direct aerosol radiative forcing on the optical properties of atmospheric aerosol and underlying surface

  • Claudio Tomasi
  • Christian Lanconelli
  • Angelo Lupi
  • Mauro Mazzola
Chapter
Part of the Springer Praxis Books book series (PRAXIS)

Abstract

Airborne aerosol is a suspension of solid particulate matter and/or liquid particles in air, which are often observed as dust, haze and smoke. They present an overall number concentration usually varying between a few hundred per cubic centimeter of air in the remote areas of the planet and more than 104 cm-3 in the most polluted urban areas, with sizes ranging mainly between 0.01 and no more than 100 μm, and therefore varying by more than four orders of magnitude (Heintzenberg, 1994). Aerosol particles are present in the atmosphere as a result of primary emissions or are formed through secondary processes involving both natural and anthropogenic gaseous species.

Keywords

Aerosol Optical Depth Surface Albedo Spectral Curve Solar Zenith Angle Particle Number Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackerman, A. S., O. B. Toon and P. V. Hobbs (1994), Reassessing the dependence of cloud condensation nucleus concentration on formation rate, Nature, 367, 445–447, doi: 10.1038/367445a0.CrossRefGoogle Scholar
  2. Ackerman, A. S., O. B. Toon, D. E. Stevens, A. J. Heymsfield, V. Ramanathan and E. J. Welton (2000), Reduction of tropical cloudiness by soot, Science, 288, 1042–1047, doi:  10.1126/science.288.5468.1042.CrossRefGoogle Scholar
  3. Ackerman, A. S., M. P. Kirkpatrick, D. E. Stevens and O. B. Toon (2004), The impact of humidity above stratiform clouds on indirect aerosol climate forcing, Nature, 432, 1014–1017, doi:  10.1038/nature03174.CrossRefGoogle Scholar
  4. Albrecht, B. (1989), Aerosols, cloud microphysics and fractional cloudiness, Science, 245, 1227–1230, doi:  10.1126/science.245.4923.1227.CrossRefGoogle Scholar
  5. Anderson, G. P., S. A. Clough, F. X. Kneizys, J. H. Chetwynd and E. P. Shettle (1986), AFGL Atmospheric Constituent Profiles (0–120 km), Environ. Res. Papers, No. 954, AFGL-TR-86-0110, Air Force Geophysics Laboratory, L. G. Hanscom Field, Massachusetts, 43 pp.Google Scholar
  6. Anderson, T. L., R. J. Charlson, N. Bellouin, O. Boucher, M. Chin, S. A. Christopher, J. Haywood, Y. J. Kaufman, S. Kinne, J. A. Ogren, L. A. Remer, T. Takemura, D. Tanré, O. Torres, C. R. Trepte, B. A. Wielicki, D. M. Winker and H. Yu (2005), An ‘A-Train’ strategy for quantifying direct climate forcing by anthropogenic aerosols, Bull. Amer. Met. Soc., 86, 1795–1809, doi:  10.1175/BAMS-86-12-1795.CrossRefGoogle Scholar
  7. Andreae, M. O. and A. Gelencsér (2006), Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols, Atmos. Chem. Phys., 6, 3131–3148, doi:  10.5194/acp-6-3131-2006.CrossRefGoogle Scholar
  8. Ǻngström, A. (1964), The parameters of atmospheric turbidity, Tellus, 16, 1, 64–75.CrossRefGoogle Scholar
  9. Bates, T. S., T. L. Anderson, T. Baynard, T. Bond, O. Boucher, G. Carmichael, A. Clarke, C. Erlick, H. Guo, L. Horowitz, S. Howell, S. Kulkarni, H. Maring, A. McComiskey, A. Middlebrook, K. Noone, C. D. O’Dowd, J. Ogren, J. Penner, P. K. Quinn, A. R. Ravishankara, D. L. Savoie, S. E. Schwartz, Y. Shinozuka, Y. Tang, R. J. Weber and Y. Wu (2006), Aerosol direct radiative effects over the northwest Atlantic, northwest Pacific, and North Indian Oceans: estimates based on in-situ chemical and optical measurements and chemical transport modeling, Atmos. Chem. Phys., 6, 1657–1732, doi: 10.5194/acp-6-1657-2006.CrossRefGoogle Scholar
  10. Bellouin, N., O. Boucher, D. Tanré and O. Dubovik (2003), Aerosol absorption over the clear-sky oceans deduced from POLDER-1 and AERONET observations, Geophys. Res. Lett., 30, 1748, doi: 10.1029/2003GL017121.CrossRefGoogle Scholar
  11. Bellouin, N., O. Boucher, J. Haywood and M. S. Reddy (2005), Global estimate of aerosol direct radiative forcing from satellite measurements, Nature, 438, 1138–1140, doi:  10.1038/nature04348.CrossRefGoogle Scholar
  12. Blanchet, J. P. (1989), Toward estimation of climatic effects due to arctic aerosols, Atmos. Environ., 23, 2609–2625, doi:  10.1016/0004-6981(89)90269-2.CrossRefGoogle Scholar
  13. Born, M. and E.Wolf (1975), Principles of Optics, Electromagnetic Theory of Propagation, Interference and Direction of Light. Pergamon Press, Oxford, Fifth Edition, 1975.Google Scholar
  14. Bothwell, G. W., E. G. Hansen, R. E. Vargo and K. C. Miller (2002), The Multiangle Imaging Spectro-Radiometer science data system, its products, tools, and performance, IEEE Trans. Geosci. Remote Sens., 40, 1467–1476, doi: 10.1109/ TGRS.2002.801152.CrossRefGoogle Scholar
  15. Burley, J. D. and H. S. Johnston (1992), Ionic mechanisms for heterogeneous stratospheric reactions and ultraviolet photoabsorption cross sections for NO2 +, HNO3, and NO3 in sulphuric acid, Geophys. Res. Lett., 19, 13, 1359–1362, doi:  10.1029/92GL01115.CrossRefGoogle Scholar
  16. Bush, B. C. and F. P. J. Valero (2002), Spectral aerosol radiative forcing at the surface during the Indian Ocean Experiment (INDOEX), J. Geophys. Res., 107, D19, 8003, doi:  10.1029/2000JD000020.CrossRefGoogle Scholar
  17. Bush, B. C. and F. P. J. Valero (2003), Surface aerosol radiative forcing at Gosan during the ACE-Asia campaign, J. Geophys. Res., 108, D23, 8660, doi: 10.1029/ 2002JD003233.CrossRefGoogle Scholar
  18. Carlson, T. N. and S. G. Benjamin (1980), Radiative heating rates for Saharan dust, J. Atmos. Sci., 37, 1, 193–213.CrossRefGoogle Scholar
  19. Carlson, T. N. and R. S. Caverly (1977), Radiative characteristics of Saharan dust at solar wavelengths, J. Geophys. Res., 82, 21, 3141–3152, doi:  10.1029/JC082i021p03141.CrossRefGoogle Scholar
  20. Carr, S. B. (2005), The Aerosol Models in MODTRAN: Incorporating Selected Measurements from Northern Australia, Technical Report of the Defence Science and Technology Organisation, No. DSTO-TR-1803, Edinburgh, South Australia (Australia), 67 pp, (see http://www.ewp.rpi.edu/hartford/~brazw/Project/Other/ Research/Soot/Carr2005 AerosolModelsInMODTRAN.pdf).
  21. Charlson, R. J., J. Langner and H. Rodhe (1990), Sulphate aerosol and climate, Nature, 348, 22–26, doi: 10.1038/348022a0.CrossRefGoogle Scholar
  22. Charlson, R. J., J. Langner, H. Rodhe, C. B. Leovy and S. G.Warren (1991), Perturbation of the northern hemisphere radiative balance by backscattering from anthropogenic sulfate aerosols, Tellus, 43 B, 152–163, doi:  10.1034/j.1600-0870.1991.00013.x.Google Scholar
  23. Charlson, R. J., S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, jr., J. E. Hansen and D. J. Hofmann (1992), Climate forcing by anthropogenic aerosols, Science, 255, 423–430, doi:  10.1126/science.255.5043.423.
  24. Chin, M., T. Diehl, P. Ginoux and W. Malm (2007), Intercontinental transport of pollution and dust aerosols: implications for regional air quality, Atmos. Chem. Phys., 7, 5501– 5517, doi: 10.5194/acp-7-5501-2007.CrossRefGoogle Scholar
  25. Christopher, S. A. and J. Zhang (2002), Shortwave aerosol radiative forcing from MODIS and CERES observations over the oceans, Geophys. Res. Lett., 29, 18, 1859, doi: 10.1029/2002GL014803.CrossRefGoogle Scholar
  26. Christopher, S. A., J. Zhang, Y. J. Kaufman and L. A. Remer (2006), Satellite-based assessment of top of atmosphere anthropogenic aerosol radiative forcing over cloudfree oceans, Geophys. Res. Lett., 33, L15816, doi:  10.1029/2005GL025535.CrossRefGoogle Scholar
  27. Chung, C. E., V. Ramanathan, D. Kim and I. A. Podgorny (2005), Global anthropogenic aerosol direct forcing derived from satellite and ground-based observations, J. Geophys. Res., 110, D24207, doi: 10.1029/2005JD006356.CrossRefGoogle Scholar
  28. Chylek, P. and J. A. Coakley, jr. (1974), Aerosols and climate, Science, 183, 75–77, doi:  10.1126/science.183.4120.75.
  29. Chylek, P. and J. Wong (1995), Effect of absorbing aerosols on global radiation budget. Geophys. Res. Lett., 22, 929–931, doi:  10.1029/95GL00800.CrossRefGoogle Scholar
  30. Coakley, J. A., jr. and P. Chylek (1975), The two-stream approximation in radiative transfer: including the angle of the incident radiation, J. Atmos. Sci., 32, 409–418.Google Scholar
  31. Coakley, J. A., jr., R. D. Cess and F. B. Yurevich (1983), The effect of tropospheric aerosols on the Earth’s radiation budget: A parameterization for climate models, J. Atmos. Sci., 40, 116–138.Google Scholar
  32. Cook, J., and E. J. Highwood (2004), Climate response to tropospheric absorbing aerosols in an intermediate general-circulation model, Q. J. R. Meteorol. Soc., 130, 596, 175– 191, doi:  10.1256/qj.03.64.CrossRefGoogle Scholar
  33. Cox, C. and W. Munk (1954), Statistics of the sea surface derived from sun glitter. J. Marine Res., 13, 198–227.Google Scholar
  34. d’Almeida, G. A., P. Koepke and E. P. Shettle (Eds.) (1991), Atmospheric Aerosols: Global Climatology and Radiative Characteristics, Hampton, Virginia, A. Deepak Publishing, 561 pp.Google Scholar
  35. Deepak, A. and H. E. Gerber (Eds.) (1983), Report of the experts meeting on aerosols and their climatic effects. WCP-55, 107 pp. (Available from World Meteorological Organization, Case Postale No. 5, CH-1211 Geneva, Switzerland).Google Scholar
  36. Deirmendjian, D. (1969), Electromagnetic Scattering on Spherical Polydispersions, New York, Elsevier, pp. 75–119.Google Scholar
  37. Diner, D. J., J. C. Beckert, T. H. Reilly, C. J. Bruegge, J. E. Conel, R. A. Kahn, J. V. Martonchik, T. P. Ackerman, R. Davies, S. A. W. Gerstl, H. R. Gordon, J.-P. Muller, R. B. Myneni, P. J. Sellers, B. Pinty and M. M. Verstraete (1998), Multi-angle Imaging Spectro Radiometer (MISR) instrument description and experiment overview, IEEE Trans. Geosci. Remote Sens., 36, 1072–1087, doi:  10.1109/36.700992.CrossRefGoogle Scholar
  38. Dubin, M., N. Sissenwine and S. Teweles (1966), U. S. Standard Atmosphere Supplements, 1966. Environmental Science Services Administration, National Aeronautics and Space Administration, United States Air Force, Washington, D. C. 20402, 289 pp.Google Scholar
  39. Dubovik, O. and M. D. King (2000), A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements, J. Geophys. Res., 105, D16, 20673–20696, doi:  10.1029/2000JD900282.CrossRefGoogle Scholar
  40. Dubovik, O., A. Smirnov, B. N. Holben, M. D. King, Y. J. Kaufman, T. F. Eck, and I. Slutsker (2000), Accuracy assessments of aerosol optical properties retrieved from AERONET sun and sky radiance measurements, J. Geophys. Res., 105, D8, 9791– 9806, doi:  10.1029/2000JD900040.CrossRefGoogle Scholar
  41. Ervens, B., G. Feingold and S. M. Kreidenweis (2005), Influence of water-soluble organic carbon on cloud drop number concentration, J. Geophys. Res., 110, D18211, doi: 10.1029/2004JD005634.CrossRefGoogle Scholar
  42. Feichter, J., E. Roeckner, U. Lohmann and B. Liepert (2004), Nonlinear aspects of the climate response to greenhouse gas and aerosol forcing, J. Climate, 17, 2384–2398.CrossRefGoogle Scholar
  43. Feingold, G. (2003), Modeling of the first indirect effect: Analysis of measurement requirements, Geophys. Res. Lett., 30, 1997, doi: 10.1029/2003GL017967.CrossRefGoogle Scholar
  44. Feingold, G., W. R. Cotton, S. M. Kreidenweis and J. T. Davis (1999), The impact of giant cloud condensation nuclei on drizzle formation in stratocumulus: Implications for cloud radiative properties, J. Atmos. Sci., 56, 4100–4117.CrossRefGoogle Scholar
  45. Forster, P., V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz and R. Van Dorland, (2007), Changes in atmospheric constituents and in radiative forcing. Chapter 2 in: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge (United Kingdom) and New York (NY, USA).Google Scholar
  46. Gatebe, C. K., O. Dubovik, M. D. King and A. Sinyuk (2010), Simultaneous retrieval of aerosol and surface optical properties from combined airborne- and ground-based direct and diffuse radiometric measurements, Atmos. Chem. Phys., 10, 2777–2794, doi: 10.5194/acp-10-2777-2010.CrossRefGoogle Scholar
  47. Grassl, H. (1973), Aerosol influence on radiative cooling, Tellus, 25, 4, 386–395.CrossRefGoogle Scholar
  48. Grassl, H. and M. Newiger (1982), Changes of local planetary albedo by aerosol particles, Sci. Total Environ., 23, 313–320, doi:  10.1016/0048-9697(82)90148-6.CrossRefGoogle Scholar
  49. Grenfell, T. C. and G. A. Maycut (1977), The optical properties of ice and snow in the Arctic Basin, J. Glaciol., 18, 78, 445–463.Google Scholar
  50. Hale, G. M. and M. R. Querry (1973), Optical constants of water in the 200 nm to 200 μm wavelength region, Appl. Opt., 12, 555–563, doi:  10.1364/AO.12.000555.CrossRefGoogle Scholar
  51. Hänel, G. (1968), The real part of the mean complex refractive index and the mean density of samples of atmospheric aerosol particles, Tellus, 20, 371–379, doi:  10.1111/j.2153- 3490.1968.tb00378.x.CrossRefGoogle Scholar
  52. Hänel, G. (1972), Computation of the extinction of visible radiation by atmospheric aerosol particles as a function of the relative humidity, based upon measured properties, J. Aerosol Sci., 3, 377–386, doi: 10.1016/0021-8502(72)90092-4.CrossRefGoogle Scholar
  53. Hänel, G. (1976), The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air, Adv. Geophys., 19, 73–88.CrossRefGoogle Scholar
  54. Hänel, G. and K. Bullrich (1978), Physico-chemical property models of tropospheric aerosol particles, Contr. Atmos. Phys., 51, 129–138.Google Scholar
  55. Hänel, G. and B. Zankl (1979), Aerosol size and relative humidity: Water uptake by mixtures of salts, Tellus, 31 B, 478–486, doi:  10.1111/j.2153-3490.1979.tb00929.x.Google Scholar
  56. Hänel, G., W. Adam, U. Bundke, L. Komguem and U. Leiterer (1999), Optical properties of boundary layer particles, columnar absorption and direct radiative forcing by particles in the solar spectral region, J. Aerosol Sci., 30, Suppl. 1, S171–S172.CrossRefGoogle Scholar
  57. Hansen, J., M. Sato, and R. Ruedy (1997), Radiative forcing and climate response, J. Geophys. Res., 102, D6, 6831–6864, doi: 10.1029/96JD03436.CrossRefGoogle Scholar
  58. Hansen, J. E., M. Sato, A. Lacis, R. Ruedy, I. Tegen and E. Matthews (1998), Climate forcings in the industrial era, Proc. Natl. Acad. Sci. USA, 95, 12,753–12,758.Google Scholar
  59. Hapke, B. (1986), Bidirectional reflectance spectroscopy. IV. The extinction coefficient and the opposition effect, Icarus, 67, 264–280, doi: 10.1016/0019-1035(86)90108-9.CrossRefGoogle Scholar
  60. Haywood, J. M., V. Ramaswamy and B. J. Soden (1999), Tropospheric aerosol climate forcing in clear-sky satellite observations over the oceans, Science, 283, 1299–1303.CrossRefGoogle Scholar
  61. Haywood, J. and O. Boucher (2000), Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review, Rev. Geophys., 38, 513–543, doi:  10.1029/1999RG000078.CrossRefGoogle Scholar
  62. Heintzenberg, J. (1994), The life cycle of the atmospheric aerosol. In Topics in Atmospheric and Interstellar Physics and Chemistry (F. Boutron, Ed.), Les Editions de Physique, Sciences, Les Ulis, France ERCA, Vol. 1, Chapter XII, pp. 251–270.Google Scholar
  63. Hess, M., P. Koepke and I. Schult (1998), Optical properties of aerosols and clouds: The software package OPAC, Bull. Am. Met. Soc., 79, 5, 831–844.CrossRefGoogle Scholar
  64. Hignett, P., J. P. Taylor, P. N. Francis and M. D. Glew (1999), Comparison of observed and modeled direct aerosol forcing during TARFOX, J. Geophys. Res., 104, D2, 2279– 2287, doi:  10.1029/98JD02021.CrossRefGoogle Scholar
  65. Hofmann, D. J. and J. M. Rosen (1983a), Stratospheric sulphuric acid fraction and mass estimate for the 1982 volcanic eruption of El Chich´on, Geophys. Res. Lett., 10, 313– 316, doi: 10.1029/GL010i004p00313.CrossRefGoogle Scholar
  66. Hofmann, D. J. and J. M. Rosen (1983b), Sulfuric acid droplet formation and growth in the stratosphere after the 1982 eruption of El Chichon, Science, 222, 325–327, doi:  10.1126/science.222.4621.325.CrossRefGoogle Scholar
  67. Holben, B. N., T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak and A. Smirnov (1998), AERONET – A federated instrument network and data archive for aerosol characterization, Remote Sens. Environ., 66, 1–16, doi: S0034-4257(98)00031-5.Google Scholar
  68. Hummel, J. R., E. P. Shettle and D. R. Longtin (1988), A new background stratospheric aerosol model for use in atmospheric radiation models, Scientific Report No. 8, AFGL-TR-88-0166, Air Force Geophysics Laboratory, Hanscom Air Force Base, Massachusetts, 01731–5000, 30 July 1988.Google Scholar
  69. IPCC (Intergovernmental Panel on Climate Change) (1996), Climate Change 1995, The Science of Climate Change [Houghton, J. T., L. G. Meira Filho, B. A. Callander, N. Harris, A. Kattenberg, and K. Maskell (eds.)], Cambridge University Press, Cambridge (United Kingdom), 572 pp.Google Scholar
  70. IPCC TAR (2001), Third Assessment Report, Climate Change 2001, Working Group I: The Scientific Basis [Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson (eds.)], Cambridge University Press, Cambridge (United Kingdom) and New York (NY, USA), 881 pp.Google Scholar
  71. Iqbal, M. (1983), An Introduction to Solar Radiation, Academic Press, Toronto, pp. 1–58.Google Scholar
  72. Irvine, W. M. and J. B. Pollack (1968), Infrared optical properties of water and ice spheres, Icarus, 8, 342–360, doi:  10.1016/0019-1035(68)90083-3.CrossRefGoogle Scholar
  73. Jacobson, M. Z. (2002), Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming, J. Geophys. Res., 107, D19, 4410, doi: 10.1029/2001JD001376.CrossRefGoogle Scholar
  74. Jacquemoud, S. and F. Baret (1990), PROSPECT: A model of leaf optical properties spectra, Remote Sens. Environ., 34, 75–91, doi:  10.1016/0034-4257(90)90100-Z.Google Scholar
  75. Jiang, H., H. Xue, A. Teller, G. Feingold and Z. Levin (2006), Aerosol effects on the lifetime of shallow cumulus, Geophys. Res. Lett., 33, L14806, doi:  10.1029/2006GL026024..CrossRefGoogle Scholar
  76. Johnson, B. T., K. P. Shine, and P. M. Forster (2004), The semi-direct aerosol effect: Impact of absorbing aerosols on marine stratocumulus, Q. J. R. Meteorol. Soc., 130, 1407–1422, doi:  10.1256/qj.03.61.CrossRefGoogle Scholar
  77. Jupp, D. L. B. (2000), A compendium of kernel and other (semi-)empirical BDRF models. CSIRO, Office of the Space Science Applications, Earth Observation Centre, pp. 18, available on http://www.cossa.csiro.au/tasks/brdf/k summ.pdf.
  78. Kasten, F. and A. T. Young (1989), Revised optical air mass tables and approximation formula, Appl. Opt., 28, 4735–4738, doi:  10.1364/AO.28.004735.CrossRefGoogle Scholar
  79. Kaufman, Y. J. (1987), Satellite sensing of aerosol absorption, J. Geophys. Res., 92, D4, 4307–4317, doi:  10.1029/JD092iD04p04307.CrossRefGoogle Scholar
  80. Kaufman, Y. J., and R. S. Fraser (1997), The effect of smoke particles on clouds and climate forcing, Science, 277, 1636–1639, doi:  10.1126/science.277.5332.1636.CrossRefGoogle Scholar
  81. Kaufman, Y. J., D. Tanré and O. Boucher (2002a), A satellite view of aerosols in the climate system, Nature, 419, 6903, 215–223, doi: 10.1038/nature01091.CrossRefGoogle Scholar
  82. Kaufman, Y. J. and I. Koren (2006), Smoke and pollution aerosol effect on cloud cover, Science, 313, 5787, 655–658, doi:  10.1126/science.1126232.CrossRefGoogle Scholar
  83. Kiehl, J. T. and B. P. Briegleb (1993), The relative roles of sulfate aerosols and greenhouse gases in climate forcing, Science, 260, 5106, 311–314, doi:  10.1126/science. 260.5106.311.CrossRefGoogle Scholar
  84. Kimes, D., W. W. Newcomb, C. J. Tucker, I. S. Zonneveld, W. Van Wijngaarden, J. De Leeuw and G. F. Epema (1985), Directional reflectance factor distributions for cover types of Northern Africa, Remote Sens. Environ., 18, 1–19, doi:  10.1016/0034- 4257(85)90034-3.Google Scholar
  85. King, M., D. Harshvardhan and A. Arking (1984), A model of the radiative properties of the El Chichon stratospheric aerosol layer, J. Clim. Appl. Meteor., 23, 7, 1121–1137.CrossRefGoogle Scholar
  86. King, M. D., Y. J. Kaufman, D. Tanré and T. Nakajima (1999), Remote sensing of tropospheric aerosols from space: past, present and future, Bull. Amer. Met. Soc., 80, 11, 2229–2259.CrossRefGoogle Scholar
  87. Kneizys, F. X., L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, A. Berk, L. S. Bernstein, D. C. Robertson, P. Acharya, L. S. Rothman, J. E. A. Selby, W. O. Gallery and S. A. Clough (1996), The MODTRAN 2/3 Report and LOWTRAN 7 model [Abreu, L. W., and G. P. Anderson (eds.)], Contract F19628-91-C.0132, Phillips Laboratory, Geophysics Directorate, PL/GPOS, Hanscom AFB, Massachusetts, 261 pp.Google Scholar
  88. Koepke, P. (1984), Effective reflectance of oceanic whitecaps, Appl. Opt., 23, 1816–1824.CrossRefGoogle Scholar
  89. Koepke, P., M. Hess, I. Schult and E. P. Shettle (1997), Global Aerosol Data Set. MPI Meteorologie Hamburg Report No. 243, 44 pp.Google Scholar
  90. Kokhanovsky, A. A. (2004), Spectral reflectance of whitecaps, J. Geophys. Res., 109, C05021, doi: 10.1029/2003JC002177.CrossRefGoogle Scholar
  91. Kokhanovsky, A. A., and F.-M. Breon (2012), Validation of an analytical snow BRDF model using PARASOL multi-angular and multispectral observations, IEEE Geosci. Rem. Sens. Letters, 9, 928–932, doi:  10.1109/LGRS.2012.2185775.CrossRefGoogle Scholar
  92. Kopp, G. and J. L. Lean (2011), A new, lower value of total solar irradiance: Evidence and climate significance, Geophys. Res. Lett., 38, L01706, doi: 10.10129/2010GL045777.Google Scholar
  93. Koren, I., J. V. Martins, L. A. Remer and H. Afargan (2008), Smoke invigoration versus inhibition of clouds over the Amazon, Science, 321, 5891, doi:  10.1126/science.1159185.CrossRefGoogle Scholar
  94. Kriebel, K. T. (1978), Measured spectral bidirectional reflection properties of four vegetated surfaces, Appl. Opt., 17, 253–259, doi:  10.1364/AO.17.000253.CrossRefGoogle Scholar
  95. Krüger, O. and H. Grassl (2002), The indirect aerosol effect over Europe, Geophys. Res. Lett., 29, 1925, doi:  10.1029/2001GL014081.CrossRefGoogle Scholar
  96. Kuusk, A. (1994), A multispectral canopy reflectance model, Remote Sens. Environ., 50, 75–82, doi:  10.1016/0034-4257(94)90035-3.Google Scholar
  97. Lewis, P. (1995), On the implementation of linear kernel-driven BRDF models, Proc. Ann. Conf. of Remote Sensing Society ‘95, ‘Remote Sensing in Action’, Southampton, UK, 11–14 Sept., 1995, 333–340.Google Scholar
  98. Lewis, P. and M. J. Barnsley (1994), Influence of the sky radiance distribution on various formulations of the Earth surface albedo, Proc. Sixth Internat. Symposium on Physical Measurements and Signatures in Remote Sensing, Val d’Isere (France), January 17–21, 1994, pp. 707–715.Google Scholar
  99. Loeb, N. G. and N. Manalo-Smith (2005), Top-of-Atmosphere direct radiative effect of aerosols over global oceans from merged CERES and MODIS observations. J. Climate, 18, 17, 3506–3526, doi:  10.1175/JCLI3504.1.CrossRefGoogle Scholar
  100. Lohmann, U. and J. Feichter (2005), Global indirect aerosol effects: A review, Atmos. Chem. Phys., 5, 715–737, doi: 10.5194/acp-5-715-2005.CrossRefGoogle Scholar
  101. Lubin, D., S. K. Satheesh, G. McFarquar and A. J. Heymsfield (2002), Longwave radi ative forcing of Indian Ocean tropospheric aerosol, J. Geophys. Res., 107, D19, 8004, doi:  10.1029/2001JD001183.CrossRefGoogle Scholar
  102. Lucht, W., C. B. Schaaf and A. H. Strahler (2000), An algorithm for the retrieval of albedo from space using semiempirical BRDF models, IEEE Trans. Geosci., Remote Sens., 38, 2, Part 2, 977–998, doi:  10.1109/36.841980.Google Scholar
  103. Marsden, D. and F. P. J. Valero (2004), Observation of water vapor greenhouse absorption over the Gulf of Mexico using aircraft and satellite data, J. Atmos. Sci., 61, 745–753.CrossRefGoogle Scholar
  104. Menon, S., J.-L. Brenguier, O. Boucher, P. Davison, A. D. Del Genio, J. Feichter, S. Ghan, S. Guibert, X. Liu, U. Lohmann, H. Pawlowska, J. E. Penner, J. Quaas, D. L. Roberts, L. Schüller, and J. Snider (2003), Evaluating aerosol/cloud/radiation process parameterizations with single-column models and Second Aerosol Characterization Experiment (ACE-2) cloudy column observations, J. Geophys. Res., 108, D24, 4762, doi: 10.1029/2003JD003902.CrossRefGoogle Scholar
  105. McClatchey, R. A., H. J. Bolle and K. Ya. Kondratyev (1980), Report of the IAMAP Radiation Commission working group on a Standard Radiation Atmosphere. WMO/IAMAP, 33 pp (available from AFGL, Hanscom Air Force Base, MA 01731).Google Scholar
  106. McCormick, R. A. and J. H. Ludwig (1967), Climate modification by atmospheric aerosols, Science, 156, 3780, 1358–1359, doi:  10.1126/science.156.3780.1358.CrossRefGoogle Scholar
  107. Mie, G. (1908), Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen, Annalen der Physik, Vierte Folge, 25, 3, 377–445.Google Scholar
  108. Morel, A. (1988), Optical modeling of the upper ocean in relation to its biogenous matter content (Case I waters), J. Geophys. Res., 93, C9, 10749–10768, doi: 10.1029/ JC093iC09p10749.CrossRefGoogle Scholar
  109. Nakajima, T., G. Tonna, R. Rao, P. Boi, Y. Kaufman and B. Holben (1996), Use of sky brightness measurements from ground for remote sensing of particulate polydispersions, Appl. Opt., 35, 2672–2686, doi:  10.1364/AO.35.002672.CrossRefGoogle Scholar
  110. Nakajima, T., M. Sekiguchi, T. Takemura, I. Uno, A. Higurashi, D. Kim, B. J. Sohn, S.-N. Oh, T. Y. Nakajima, S. Ohta, I. Okada, T. Takemura and K Kawamoto (2003), Significance of direct and indirect radiative forcings of aerosols in the East China Sea region, J. Geophys. Res., 108, D23, 8658, doi: 10.1029/2002JD003261.CrossRefGoogle Scholar
  111. Nicodemus, F. E., J. C. Richmond, J. J. Hsia, I. W. Ginsberg and T. Limperis (1977), Geometrical considerations and nomenclature for reflectance, Natl. Bur. Stand. Rep., NBS MN-160, 52 pp.Google Scholar
  112. Nilson, T. and A. Kuusk (1989), A reflectance model for the homogeneous plant canopy and its inversion, Remote Sens. Environ., 27, 157–167, doi:  10.1016/0034- 4257(89)90015-1.Google Scholar
  113. Palmer, K. F. and D. Williams (1975), Optical constants of sulphuric acid; application to the clouds of Venus?, Appl. Opt., 14, 208–219, doi:  10.1364/AO.14.000208.Google Scholar
  114. Patterson, E. M. (1977), Atmospheric extinction between 0.55 μm and 10.6 μm due to soil-derived aerosols, Appl. Opt., 16, 2414–2418, doi:  10.1364/AO.16.002414.CrossRefGoogle Scholar
  115. Patterson, E. M. (1981), Optical properties of the crustal aerosol: Relation to chemical and physical characteristics, J. Geophys. Res., 86, C4, 3236–3246, doi:  10.1029/JC086iC04p03236.CrossRefGoogle Scholar
  116. Patterson, E. M., D. A. Gillette and B. H. Stockton (1977), Complex index of refraction between 300 and 700 nm for Saharan aerosols, J. Geophys. Res., 82, 21, 3153–3160, doi:  10.1029/JC082i021p03153.CrossRefGoogle Scholar
  117. Penner, J. E., M. Andreae, H. Annergarn, L. Barrie, J. Feichter, D. Hegg, A. Jayaraman, R. Leaitch, D. Murphy, J. Nganga, and G. Pitari (2001), Aerosols, their direct and indirect effects. In: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change [Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson (eds.)], Cambridge University Press, Cambridge (United Kingdom) and New York (NY, USA), pp. 289–348.Google Scholar
  118. Price, J. C. (1990), On the information content of soil reflectance spectra. Remote Sens. Environ., 33, 113–121, doi:  10.1016/0034-4257(90)90037-M.CrossRefGoogle Scholar
  119. Pueschel, R. F., K. G. Snetsinger, J. K. Goodman, O. B. Toon, G. V. Ferry, V. R. Oberbeck, J. M. Livingston, S. Verma, W. Fong, W. L. Starr and K. R. Chan (1989), Condensed nitrate, sulfate, and chloride in Antarctic stratospheric aerosols, J. Geophys. Res., 94, D9, 11271–11284, doi:  10.1029/JD094iD09p11271.CrossRefGoogle Scholar
  120. Pueschel, R. F., S. A. Kinne, P. B. Russell, K. G. Snetsinger and J. M. Livingston (1993), Effects of the 1991 Pinatubo volcanic eruption on the physical and radiative properties of stratospheric aerosols. In IRS ’92: Current Problems in Atmospheric Radiation, Proceedings of the International Radiation Symposium [Keevallik, S., and O. Kärner (eds.)], Tallinn (Estonia), 2–8 August 1992, A. Deepak Publishing, Hampton, Virginia (USA), pp. 183–186.Google Scholar
  121. Quaas, J., O. Boucher, N. Bellouin and S. Kinne (2008), Satellite-based estimate of the direct and indirect aerosol climate forcing, J. Geophys. Res., 113, D05204, doi: 10.1029/2007JD008962.CrossRefGoogle Scholar
  122. Rahman, H., B. Pinty and M. M. Verstraete (1993), Coupled surface–atmosphere reflectance (CSAR) model 2. Semiempirical surface model usable with NOAA Advanced Very High Resolution Radiometer data, J. Geophys. Res., 98, D11, 20791–20801, doi:  10.1029/93JD02072.
  123. Ramanathan, V., P. J. Crutzen, J. T. Kiehl and D. Rosenfeld (2001a), Aerosols, climate and the hydrological cycle, Science, 294, 5549, 2119–2124, doi:  10.1126/science. 1064034.CrossRefGoogle Scholar
  124. Ramanathan, V., P. J. Crutzen, J. Lelieveld, A. P. Mitra, D. Althausen, J. Anderson, M. O. Andreae, W. Cantrell, G. R. Cass, C. E. Chung, A. D. Clarke, J. A. Coakley, W. D. Collins, W. C. Conant, F. Dulac, J. Heintzenberg, A. J. Heymsfield, B. Holben, S. Howell, J. Hudson, A. Jayaraman, J. T. Kiehl, T. N. Krishnamurti, D. Lubin, G. McFarquhar, T. Novakov, J. A. Ogren, I. A. Podgorny, K. Prather, K. Priestley, J. M. Prospero, P. K. Quinn, K. Rajeev, P. Rasch, S. Rupert, R. Sadourny, S. K. Satheesh, G. E. Shaw, P. Sheridan and F. P. J. Valero (2001b), Indian Ocean Experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze. J. Geophys. Res., 106, D22, 28371–28398, doi:  10.1029/2001JD900133.CrossRefGoogle Scholar
  125. Ramaswamy, V., O. Boucher, J. Haigh, D. Hauglustaine, J. Haywood, G. Myhre, T, Nakajima, G. Y. Shi, and S. Solomon (2001), Radiative forcing of climate change. In: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change [Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson (eds.)], Cambridge University Press, Cambridge (United Kingdom) and New York (NY, USA), pp. 349–416.Google Scholar
  126. Remer, L. A. and Y. J. Kaufman (2006), Aerosol direct radiative effect at the top of the atmosphere over cloud free ocean derived from four years of MODIS data, Atmos. Chem. Phys., 6, 1, 237–253, doi: 10.5194/acp-6-237-2006.CrossRefGoogle Scholar
  127. Ricchiazzi, P., S. Yang, C. Gautier and D. Sowle (1998), SBDART: A research and teaching software tool for plane-parallel radiative transfer in the Earth’s atmosphere, Bull. Am. Met. Soc., 79, 10, 2101–2114.CrossRefGoogle Scholar
  128. Ricchiazzi, P., W. O’Hirok and C. Gautier (2005), The effect of non-lambertian surface reflectance on aerosol radiative forcing, Fifteenth ARM Science Team Meeting Proceedings, Daytona Beach, Florida, March 14–18, 2005, 8 pp.Google Scholar
  129. Román, M. O., C. B. Schaaf, P. Lewis, F. Gao, G. P. Anderson, J. L. Privette, A. H. Strahler, C. E. Woodcock and M. Barnsley (2010), Assessing the coupling between surface albedo derived from MODIS and the fraction of diffuse skylight over spatially-characterized landscapes, Remote Sens. Environ., 114, 4, 738–760, doi:  10.1016/j.rse.2009.11.014.Google Scholar
  130. Russell, P. B., S. A. Kinne and R. W. Bergstrom (1997), Aerosol climate effects: Local radiative forcing and column closure experiments, J. Geophys. Res., 102, D8, 9397– 9407, doi:  10.1029/97JD00112.CrossRefGoogle Scholar
  131. Russell, P. B., J. M. Livingston, P. Hignett, S. Kinne, J.Wong, A. Chien, R. Bergstrom, P. Durkee and P. V. Hobbs (1999), Aerosol-induced radiative flux changes off the United States mid-Atlantic coast: Comparison of values calculated from sunphotometer and in situ data with those measured by airborne pyranometer, J. Geophys. Res., 104, D2, 2289–2307, doi:  10.1029/1998JD200025.CrossRefGoogle Scholar
  132. Satheesh, S. K. and V. Ramanathan (2000), Large differences in tropical aerosol forcing at the top of the atmosphere and Earth’s surface, Nature, 405, 6782, 60–63, doi:  10.1038/35011039.CrossRefGoogle Scholar
  133. Schwartz, S. E. and M. O. Andreae (1996), Uncertainty in climate change caused by aerosols, Science, 272, 5265, 1121–1122, doi:  10.1126/science.272.5265.1121.CrossRefGoogle Scholar
  134. Schwartz, S. E., F. Arnold, J.-P. Blanchet, P. A. Durkee, D. J. Hofmann,W. A. Hoppel, M. D. King, A. A. Lacis, T. Nakajima, J. A. Ogren, O. B. Toon and M. Wendisch (1995), Group report: Connections between aerosol properties and forcing of climate. In Aerosol Forcing of Climate (R. J. Charlson and J. Heintzenberg, Eds), John Wiley & Sons, New York, pp. 251–280.Google Scholar
  135. Seinfeld, J. H. and S. N. Pandis (2006), Atmospheric Chemistry and Physics, from Air Pollution to Climate Change (Second Edition), John Wiley & Sons, New York (USA), 1225 pp.Google Scholar
  136. Shettle, E. P. (1984), Optical and radiative properties of a desert aerosol model. In IRS ’84: Current Problems in Atmospheric Radiation, Proceedings of the International Radiation Symposium [Fiocco, G. (ed.)], Perugia, Italy, 21–28 August 1984, A. Deepak Publishing, Hampton, Virginia, USA, 74–77.Google Scholar
  137. Shettle, E. P. and R. W. Fenn (1979), Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties, Environ. Res. Papers, No. 676, Air Force Geophys. Lab., AFGL-Techn. Rep. 79–0214, Hanscom AFB, MA, 94 pp.Google Scholar
  138. Sobolev, V. V. (1975), Light Scattering in Planetary Atmospheres, New York, Pergamon Press, 256 pp.Google Scholar
  139. Stott, P. A., J. F. B. Mitchell, M. R. Allen, T. L. Delworth, J. M. Gregory, G. A. Meehl and B. D. Santer (2006), Observational constraints on past attributable warming and predictions of future global warming, J. Climate, 19, 3055–3069.CrossRefGoogle Scholar
  140. Takemura, T., T. Nakajima, O. Dubovik, B. N. Holben and S. Kinne (2002), Singlescattering albedo and radiative forcing of various aerosol species with a global threedimensional model, J. Climate, 15, 333–352.CrossRefGoogle Scholar
  141. Takemura, T., T. Nozawa, S. Emori, T. Y. Nakajima and T. Nakajima (2005), Simulation of climate response to aerosol direct and indirect effects with aerosol transportradiation model, J. Geophys. Res., 110, D02202, doi: 10.1029/2004JD005029.CrossRefGoogle Scholar
  142. Tanré, D., J. Haywood, J. Pelon, J. F. Léon, B. Chatenet, P. Formenti, P. Francis, P. Goloub, E. J. Highwood and G. Myhre (2003), Measurement and modeling of the Saharan dust radiative impact: Overview of the Saharan Dust Experiment (SHADE), J. Geophys. Res., 108, D18, 8574, doi: 10.1029/2002JD003273.CrossRefGoogle Scholar
  143. Tomasi, C., F. Prodi and F. Tampieri (1979), Atmospheric turbidity variations caused by layers of Sahara dust particles, Beitr. Phys. Atmos., 52, 3, 215–228.Google Scholar
  144. Tomasi, C., V. Vitale and L. Tarozzi (1997), Sun-photometric measurements of atmospheric turbidity variations caused by the Pinatubo aerosol cloud in the Himalayan region during the summer periods of 1991 and 1992, Il Nuovo Cimento, 20 C, 61–88.Google Scholar
  145. Tomasi, C., V. Vitale and L. V. De Santis (1998), Relative optical mass functions for air, water vapor, ozone and nitrogen dioxide in atmospheric models presenting different latitudinal and seasonal conditions, Meteorol. Atmos. Phys., 65, 11–30, doi:  10.1007/BF01030266.CrossRefGoogle Scholar
  146. Tomasi, C., V. Vitale, A. Lupi, C. Di Carmine, M. Campanelli, A. Herber, R. Treffeisen, R. S. Stone, E. Andrews, S. Sharma, V. Radionov, W. von Hoyningen-Huene, K. Stebel, G. H. Hansen, C. L. Myhre, C. Wehrli, V. Aaltonen, H. Lihavainen, A. Virkkula, R. Hillamo, J. Ström, C. Toledano, V. Cachorro, P. Ortiz, A. de Frutos, S. Blindheim, M. Frioud, M. Gausa, T. Zielinski, T. Petelski and T. Yamanouchi (2007), Aerosols in polar regions: A historical overview based on optical depth and in situ observations, J. Geophys. Res., 112, D16205, doi: 10.1029/2007JD008432.CrossRefGoogle Scholar
  147. Tomasi, C., A. Lupi, M. Mazzola, R. S. Stone, E. G. Dutton, A. Herber, V. F. Radionov, B. N. Holben, M. G. Sorokin, S. M. Sakerin, S. A. Terpugova, P. S. Sobolewski, C. Lanconelli, B. H. Petkov, M. Busetto and V. Vitale (2012), An update on polar aerosol optical properties using POLAR-AOD and other measurements performed during the International Polar Year, Atmos. Environ., 52, 29–47, doi: 10.1016/j.atmosenv.2012.02.055.CrossRefGoogle Scholar
  148. Turco, R. P., R. C.Whitten and O. B. Toon (1982), Stratospheric aerosols: observation and theory, Rev. Geophys. Space Phys., 20, 2, 233–279, doi:  10.1029/RG020i002p00233.CrossRefGoogle Scholar
  149. Twitty, J. T. and J. A. Weinman (1971), Radiative properties of carbonaceous aerosols, J. Appl. Meteorol., 10, 4, 725–731.CrossRefGoogle Scholar
  150. Twomey, S. A. (1977), The influence of pollution on the shortwave albedo of clouds, J. Atmos. Sci., 34, 7, 1149–1152.CrossRefGoogle Scholar
  151. Valero, F. P. J. and P. Pilewskie (1992), Latitudinal survey of spectral optical depths of the Pinatubo volcanic cloud-derived particle sizes, columnar mass loadings, and effects on planetary albedo, Gephys. Res. Lett., 19, 2, 163–166, doi:  10.1029/92GL00074.CrossRefGoogle Scholar
  152. Valero, F. P. J. and B. C. Bush (1999), Measured and calculated clear-sky solar radiative fluxes during the Subsonic Aircraft Contrail and Cloud Effects Special Study (SUCCESS), J. Geophys. Res., 104, D22, 27387–27398, doi:  10.1029/1999JD900947.CrossRefGoogle Scholar
  153. Vermote, E. F., D. Tanré, J. L. Deuzé, M. Herman and J.-J. Morcrette (1997a), Second simulation of the satellite signal in the solar spectrum (6S): An overview, IEEE Trans. Geosci. Remote Sens., 35, 3, 675–686, doi:  10.1109/36.581987.CrossRefGoogle Scholar
  154. Vermote, E. F., D. Tanré, J. L. Deuzé, M. Herman and J. J. Morcrette (1997b), Second Simulation of the Satellite Signal in the Solar Spectrum (6S), 6S User Guide Version 2, July 1997. Universit`e de Lille, France, 218 pp.Google Scholar
  155. Volz, F. E. (1972a), Infrared absorption by atmospheric aerosol substances, J. Geophys. Res., 77, 6, 1017–1031, doi:  10.1029/JC077i006p01017.CrossRefGoogle Scholar
  156. Volz, F. E. (1972b), Infrared refractive index of atmospheric aerosol substances, Appl. Opt., 11, 4, 755–759, doi:  10.1364/AO.11.000755.Google Scholar
  157. Volz, F. E. (1973), Infrared optical constants of ammonium sulfate, Sahara dust, volcanic pumice, and flyash, Appl. Opt., 12, 3, 564–568, doi:  10.1364/AO.12.000564.Google Scholar
  158. Vonder Haar, T. H. and V. E. Suomi (1971), Measurements of the Earth’s radiation budget from satellites during a five-year period. Part I: Extended time and space means, J. Atmos. Sci., 28, 305–314, doi: 10.1175/1520-0469(1971)028<0305:MOTERB>2.0.CO;2.
  159. Waliser, D. E. and N. E. Graham (1993), Convective cloud systems and warm-pool sea surface temperatures: Coupled interactions and self-regulation, J. Geophys. Res., 98, D7, 12,881–12,893, doi:  10.1029/93JD00872.
  160. Wanner,W., A. H. Strahler, B. Hu, P. Lewis, J.-P. Muller, X. Li, C. L. B. Schaaf and M. J. Barnsley (1997), Global retrieval of bidirectional reflectance and albedo over land from EOS MODIS and MISR data: Theory and algorithm, J. Geophys. Res., 102, D14, 17,143–17,161, doi:  10.1029/96JD03295.
  161. Warren, S. G. (1984), Optical constants of ice from the ultraviolet to the microwave, Appl. Opt., 23, 1206–1225, doi:  10.1364/AO.23.001206.CrossRefGoogle Scholar
  162. Warren, S. G. and W. J. Wiscombe (1980), A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols, J. Atmos. Sci., 37, 12, 2734–2745.Google Scholar
  163. Wiscombe, W. J. and G. W. Grams (1976), The backscattered fraction in two-stream approximations, J. Atmos. Sci., 33, 12, 2440–2451.CrossRefGoogle Scholar
  164. Wiscombe, W. J. and S. G.. Warren (1980), A model for the spectral albedo of snow. I: Pure snow, J. Atmos. Sci., 37, 12, 2712–2733.Google Scholar
  165. WMO (1983), World Meteorological Organization (WMO/CAS)/Radiation Commission of IAMAP Meeting of experts on aerosols and their climatic effects,WCP 55, Williamsburg, Virginia, U.S.A., March 28–30, 1983.Google Scholar
  166. WMO (1986), Atmospheric Ozone 1985. WMO Global Ozone Research and MonitoringProject, Report No. 16, Geneva (Switzerland).Google Scholar
  167. Yu, H., S. C. Liu and R. E. Dickinson (2002), Radiative effects of aerosols on the evolution of the atmospheric boundary layer, J. Geophys. Res., 107, 4142, doi: 10.1029/2001JD000754.CrossRefGoogle Scholar
  168. Yu, H., R. Dickinson, M. Chin, Y. J. Kaufman, M. Zhou, L. Zhou, Y. Tian, O. Dubovik and B. Holben (2004), Direct radiative effect of aerosols as determined from a combination of MODIS retrievals and GOCART simulations, J. Geophys. Res., 109, D03206, doi: 10.1029/2003JD003914.CrossRefGoogle Scholar
  169. Zdunkowski, W. G., R. M. Welch, and G. Korb (1980), An investigation of the structure of typical two-stream-methods for the calculation of solar fluxes and heating rates in clouds, Beitr. Phys. Atmos., 53, 147–166.Google Scholar
  170. Zhang, J. and S. A. Christopher (2003), Longwave radiative forcing of Saharan dust aerosols estimated from MODIS, MISR, and CERES observations on Terra., Geophys. Res. Lett., 30, 2188, doi: 10.1029/2003GL018479.
  171. Zhao, T. X.-P., H. Yu, I. Laszlo, M. Chin and W. C. Conant (2008), Derivation of component aerosol direct radiative forcing at the top of atmosphere for clear-sky oceans, J. Quant. Spectrosc. Rad. Transfer, 109, 7, 1162–1186, doi:  10.1016/j.jqsrt.2007.10.006.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Claudio Tomasi
    • 1
  • Christian Lanconelli
    • 1
  • Angelo Lupi
    • 1
  • Mauro Mazzola
    • 1
  1. 1.Institute of Atmospheric Sciences and Climate (ISAC)National Council of Research (CNR)BolognaItaly

Personalised recommendations