A review of fast radiative transfer techniques

  • Vijay Natraj
Part of the Springer Praxis Books book series (PRAXIS)


Atmospheric radiative transfer involves gas absorption coupled with molecular Rayleigh scattering, in addition to scattering and absorption by clouds and aerosols. Further, computation of heating rates are dependent on absorption and emission of radiation, processes that have a complex dependence on various quantities. Typically, spectral regions contain several overlapping lines with intensities varying over many orders of magnitude. The most accurate method for computing the radiative terms in a molecular atmosphere involves a detailed line-by-line (LBL) calculation of the absorption coefficient versus wavenumber. However, direct numerical solution of the radiative transfer equation over frequency is in most cases too computationally expensive to be used on a routine basis. Therefore a variety of approximations have been developed to accelerate the computational process. This chapter discusses several of these techniques.


Radiative Transfer Stokes Parameter Radiative Transfer Calculation Cloud Optical Thickness Principal Component Analy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ambartsumian, V. (1936), The effect of the absorption lines on the radiative equilibrium of the outer layers of the stars, Publ. Obs. Astron. Univ. Leningrad, 6, 7–18.Google Scholar
  2. Arking, A. A., and K. Grossman (1972), The influence of line shape and band structure on temperatures in planetary atmospheres, J. Atmos. Sci., 29, 937–949.CrossRefGoogle Scholar
  3. Armbruster, W., and J. Fischer (1996), Improved method of exponential sum fitting of transmissions to describe the absorption of atmospheric gases, Appl. Opt., 35(12), 1931–1941, doi:10.1364/AO.35.001931.CrossRefGoogle Scholar
  4. Boesche, E., P. Stammes, R. Preusker, R. Bennartz, W. Knap, and J. Fischer (2008), Polarization of skylight in the O2 A band: Effects of aerosol properties, Appl. Opt., 47(19), 3467–3480, doi:10.1364/AO.47.003467.CrossRefGoogle Scholar
  5. Buchwitz, M., V. V. Rozanov, and J. P. Burrows (2000), A correlated-k distribution scheme for overlapping gases suitable for retrieval of atmospheric constituents from moderate resolution radiance measurements in the visible/near-infrared spectral region, J. Geophys. Res., 105(D12), 15247–15261, doi:10.1029/2000JD900171.CrossRefGoogle Scholar
  6. Cao, Y., W. Zhang, Y. Zhang, H. Chang, and M. Cong (2011), A new k-interval selection technique for fast atmospheric radiance calculation in remote sensing applications, J. Quant. Spectrosc. Radiat. Transfer, 112(9), 1479–1485, 10.1016/j.jqsrt.2011.03.004.CrossRefGoogle Scholar
  7. Chandrasekhar, S. (1950), Radiative Transfer, Oxford: Clarendon Press.Google Scholar
  8. Chou, M. D., and A. Arking (1980), Computation of infrared cooling rates in the water vapor bands, J. Atmos. Sci., 37, 855–867.CrossRefGoogle Scholar
  9. Chou, M.-D., W. L. Ridgway, and M. M.-H. Yan (1993), One-parameter scaling and exponential-sum fitting for water vapor and CO2 infrared transmission functions, J. Atmos. Sci., 50(14), 2294–2303, doi:10.1175/1520-0469(1993)050<2294:OPSAES> 2.0.CO;2.Google Scholar
  10. Crisp, D. (1997), Absorption of sunlight by water vapor in cloudy conditions: A partial explanation for the cloud absorption anomaly, Geophys. Res. Lett., 24(5), 571–574, doi:10.1029/97GL50245.CrossRefGoogle Scholar
  11. Duan, M., Q. Min, and J. Li (2005), A fast radiative transfer model for simulating high-resolution absorption bands, J. Geophys. Res., 110, D15201, doi:10.1029/ 2004JD005590.CrossRefGoogle Scholar
  12. Germogenova, T. A. (1961), On the solution of the transfer equation for a plane layer, Zurnal. Appl. Math. Math. Phys., 1, 1001–1008.Google Scholar
  13. Germogenova, T. A. (1963), Some formulas to solve the transfer equation in a plane layer problem, in Spectroscopy of Scattering Media, (ed. B. I. Stepanov), Minsk: AN BSSR, 36–41.Google Scholar
  14. Goody, R., R. West, L. Chen, and D. Crisp (1989), The correlated-k method for radiation calculations in non homogeneous atmospheres, J. Quant. Spectrosc. Radiat. Transfer, 42, 539–550.CrossRefGoogle Scholar
  15. Hasekamp, O. P., and A. Butz (2008), Efficient calculation of intensity and polarization spectra in vertically inhomogeneous scattering and absorbing atmospheres, J. Geophys. Res., 113, D20309, doi:10.1029/2008JD010379.CrossRefGoogle Scholar
  16. Hovenier, J. W. (1971), Multiple scattering of polarized light in planetary atmospheres, Astron. Astrophys., 13, 7–29.Google Scholar
  17. Hunt, G., and I. Grant (1969), Discrete space theory of radiative transfer and its application to problems in planetary atmospheres, J. Atmos. Sci., 26, 963–972, doi:10.1175/ 1520-0469(1969)026<0963:DSTORT>2.0.CO;2.Google Scholar
  18. Kawabata, K., and S. Ueno (1988), The first three orders of scattering in vertically inhomogeneous scattering-absorbing media, Astrophys. Space Sci., 150, 327–344.CrossRefGoogle Scholar
  19. Key, J. R., and A. J. Schweiger (1998), Tools for atmospheric radiative transfer: Streamer and FluxNet, Comp. Geosci., 24(5), 443–451, doi:10.1016/S0098-3004(97)00130-1.CrossRefGoogle Scholar
  20. Kokhanovsky, A. A. (2002), Simple approximate formula for the reflection function of a homogeneous, semi-infinite turbid medium, J. Opt. Soc. Am. A, 19(5), 957–960.CrossRefGoogle Scholar
  21. Kokhanovsky, A. A., and T. Nauss (2006), Reflection and transmission of solar light by clouds: Asymptotic theory, Atmos. Chem. Phys., 6, 5,537-5,545, doi:10.5194/acp-6- 5537–2006.Google Scholar
  22. Kokhanovsky, A. A., and V. V. Rozanov (2003), The reflection function of optically thick weakly absorbing turbid layers: A simple approximation, J. Quant. Spectrosc. Radiat. Transfer, 77, 165–175.CrossRefGoogle Scholar
  23. Kratz, D. P. (1995), The correlated k-distribution technique as applied to the AVHRR channels, J. Quant. Spectrosc. Radiat. Transfer, 53(5), 501–517, doi:10.1016/0022- 4073(95)00006-7.Google Scholar
  24. Kratz, D. P., M.-D. Chou, M. M.-H. Yan, and C.-H. Ho (1998), Minor trace gas radiative forcing calculations using the k distribution method with one-parameter scaling, J. Geophys. Res., 103(D24), 31,647–31,656, doi:10.1029/1998JD200009.Google Scholar
  25. Lacis, A. A., and V. Oinas (1991), A description of the correlated k distribution method for modeling non gray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres, J. Geophys. Res., 96, 9027–9063.CrossRefGoogle Scholar
  26. Lacis, A. A., W. C. Wang, and J. E. Hansen (1979), Correlated k-distribution method for radiative transfer in climate models: Application to effect of cirrus clouds on climate, NASA Conf. Publ., 2076, 309–314.Google Scholar
  27. Liu, X., W. L. Smith, D. K. Zhou, and A. Larar (2006), Principal component-based radiative transfer model for hyperspectral sensors: theoretical concept, Appl. Opt., 45(1), 201–209, doi: 10.1364/AO.45.000201.CrossRefGoogle Scholar
  28. Mano, Y. (1995), Modified ESFT method for application to atmospheric radiation, Papers in Meteorology and Geophysics, 46(1), 1–8.CrossRefGoogle Scholar
  29. Meadows, V. S., and D. Crisp (1996), Ground-based near-infrared observations of the Venus nightside: The thermal structure and water abundance near the surface, J. Geophys. Res., 101(E2), 4595–4622, doi:10.1029/95JE03567.CrossRefGoogle Scholar
  30. Moncet, J.-L., G. Uymin, A. E. Lipton, and H. E. Snell (2008), Infrared radiance modeling by Optimal Spectral Sampling, J. Atmos. Sci., 65, 3917–3934, doi:10.1175/ 2008JAS2711.1.CrossRefGoogle Scholar
  31. Natraj, V., X. Jiang, R.-L. Shia, X. Huang, J. S. Margolis, and Y. L. Yung (2005), Application of principal component analysis to high spectral resolution radiative transfer: A case study of the O2 A band, J. Quant. Spectrosc. Radiat. Transfer, 95(4), 539–556, doi:10.1016/j.jqsrt.2004.12.024.CrossRefGoogle Scholar
  32. Natraj, V., R.-L. Shia, and Y. L. Yung (2010), On the use of principal component analysis to speed up radiative transfer calculations, J. Quant. Spectrosc. Radiat. Transfer, 111(5), 810–816, doi:10.1016/j.jqsrt.2009.11.004.CrossRefGoogle Scholar
  33. Natraj, V., and R. J. D. Spurr (2007), A fast linearized pseudo-spherical two orders of scattering model to account for polarization in vertically inhomogeneous scattering–absorbing media, J. Quant. Spectrosc. Radiat. Transfer, 107(2), 263–293, doi:10.1016/j.jqsrt.2007.02.011.CrossRefGoogle Scholar
  34. Nauss, T., and A. A. Kokhanovsky (2011), Retrieval of warm cloud optical properties using simple approximations, Remote Sens. Environ., 115(6), 1,317–1,325, doi:10.1016/ j.rse.2011.01.010.Google Scholar
  35. O’Dell, C. W. (2010), Acceleration of multiple-scattering, hyperspectral radiative transfer calculations via low-streams interpolation, J. Geophys. Res., 115, D10206, doi:10.1029/2009JD012803.CrossRefGoogle Scholar
  36. Schwander, H., A. Kaifel, A. Ruggaber, and P. Koepke (2001), Spectral radiative-transfer modeling with minimized computation time by use of a neural-network technique, Appl. Opt., 40(3), 331–335, doi:10.1364/AO.40.000331.CrossRefGoogle Scholar
  37. Sobolev, V. V. (1984), Integral relations and asymptotic expressions in the theory of radiative transfer, Astrofizika, 20, 123–132.Google Scholar
  38. Spurr, R. J. D. (2002), Simultaneous derivation of intensities and weighting functions in a general pseudo-spherical discrete ordinate radiative transfer treatment, J. Quant. Spectrosc. Radiat. Transfer, 75(2), 129–175, doi: 10.1016/S0022-4073(02)00014-6.CrossRefGoogle Scholar
  39. Takenaka, H., T. Y. Nakajima, A. Higurashi, A. Higuchi, T. Takamura, R. T. Pinker, and T. Nakajima (2011), Estimation of solar radiation using a neural network based on radiative transfer, J. Geophys. Res., 116, D08215, doi:10.1029/2009JD013337.CrossRefGoogle Scholar
  40. van de Hulst, H. C. (1980), Multiple Light Scattering: Tables, Formulas and Applications, New York: Academic Press.Google Scholar
  41. West, R, D. Crisp, and L. Chen (1990), Mapping transformations for broadband atmospheric radiation calculations, J. Quant. Spectrosc. Radiat. Transfer, 43, 191–199.CrossRefGoogle Scholar
  42. Wiscombe, W. J., and J. W. Evans (1977), Exponential-sum fitting of radiative transmission functions, J. Comp. Phys., 24, 416–444, doi:10.1016/0021-9991(77)90031-6.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Earth Atmospheric Science, M/S 233-200 Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations