Principles of Homotopy Analysis

  • Kuppalapalle Vajravelu
  • Robert A. van Gorder

Abstract

In this chapter we shall introduce the basic principles of the homotopy analysis method for nonlinear differential equations. In Section 2.1, we shall review the topological principle of homotopy and then discuss how this relates to the homotopy analysis method for constructing solutions to nonlinear differential equations. As with any perturbation method, we shall need a way to compute higher order corrections, and this is outlined in Section 2.2, where we discuss the higher order deformation equations. From here, we are then able to outline the general method of constructing series solutions to nonlinear differential equations and relevant initial or boundary value problems in Section 2.3. Often times when dealing with nonlinear differential equations, the question of whether solutions exist and are unique is of importance. Accordingly, in Section 2.4, we discuss the existence and uniqueness of solutions obtained via the homotopy analysis method. Throughout mathematics, there are often multiple ways to solve a given problem. In obtaining perturbation solutions to differential equations, there are multiple iterative routines one may employ. In Section 2.5, we compare the method of homotopy analysis to some other perturbation schemes, and highlight one primary benefit of the method — namely, that the homotopy analysis method solution does not require small model parameters. From here, we will be in a position to introduce more advanced methods which permit the control of convergence of solutions in Chapter 3 and advanced treatments for more complicated systems of equations in Chapter 4.

Keywords

Stagnation Point Series Solution Nonlinear Differential Equation Homotopy Analysis Method Homotopy Perturbation Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [[1]
    S. J. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method, Chapman & Hall\CRC Press, Boca Raton, 2003.CrossRefGoogle Scholar
  2. [[2]
    S. J. Liao, On the proposed homotopy analysis techniques for nonlinear problems and its application, Ph.D. dissertation, Shanghai Jiao Tong University, 1992.Google Scholar
  3. [[3]
    S. J. Liao, An explicit, totally analytic approximation of Blasius’ viscous flow problems, Int. J. Non-Linear Mech., 34 (1999) 759.MATHCrossRefGoogle Scholar
  4. [[4]
    S. J. Liao, On the homotopy analysis method for nonlinear problems, Applied Mathematics and Computation, 147 (2004) 499.MathSciNetMATHCrossRefGoogle Scholar
  5. [[5]
    S. J. Liao and Y. Tan, A general approach to obtain series solutions of nonlinear differential equations, Studies in Applied Mathematics, 119 (2007) 297.MathSciNetCrossRefGoogle Scholar
  6. [[6]
    S. J. Liao, Notes on the homotopy analysis method: Some definitions and theorems, Communications in Nonlinear Science and Numerical Simulation, 14 (2009) 983.MathSciNetMATHCrossRefGoogle Scholar
  7. [[7]
    R.A. Van Gorder and K. Vajravelu, On the selection of auxiliary functions, operators, and convergence control parameters in the application of the homotopy analysis method to nonlinear differential equations: A general approach, Communications in Nonlinear Science and Numerical Simulation, 14 (2009) 4078.MathSciNetMATHCrossRefGoogle Scholar
  8. [[8]
    S. Li and S.J. Liao, An analytic approach to solve multiple solutions of a strongly nonlinear problem, Applied Mathematics and Computation, 169 (2005) 854.MathSciNetMATHCrossRefGoogle Scholar
  9. [[9]
    H. Xu and S.J. Liao, Dual solutions of boundary layer flow over an upstream moving plate, Communications in Nonlinear Science and Numerical Simulation, 13 (2008) 350.MathSciNetMATHCrossRefGoogle Scholar
  10. [[10]
    S.J. Liao, Series solution of nonlinear eigenvalue problems by means of the homotopy analysis method, Nonlinear Analysis: Real World Applications, 10 (2009) 2455.MathSciNetMATHCrossRefGoogle Scholar
  11. [[11]
    S.J. Liao, Series solutions of unsteady boundary-layer flows over a stretching flat plate, Studies Applied Mathematics, 117 (2006) 239.MATHCrossRefGoogle Scholar
  12. [[12]
    S.J. Liao, Finding multiple solutions of nonlinear problems by means of the homotopy analysis method, Journal of Hydrodynamics, Ser. B, 18 (2006) 54.CrossRefGoogle Scholar
  13. [[13]
    S. Abbasbandy and A. Shirzadi, Homotopy analysis method for multiple solutions of the fractional Sturm-Liouville problems, Numerical Algorithms, 54 (2010) 521.MathSciNetMATHCrossRefGoogle Scholar
  14. [[14]
    S.J. Liao, Comparison between the homotopy analysis method and homotopy perturbation method, Applied Mathematics and Computation, 169 (2005) 1186.MathSciNetMATHCrossRefGoogle Scholar
  15. [[15]
    M.S.H. Chowdhury, I. Hashim and O. Abdulaziz, Comparison of homotopy analysis method and homotopy-perturbation method for purely nonlinear fin-type problems, Communications in Nonlinear Science and Numerical Simulation, 14 (2009) 371.MathSciNetMATHCrossRefGoogle Scholar
  16. [[16]
    G. Domairry and N. Nadim, Assessment of homotopy analysis method and homotopy perturbation method in non-linear heat transfer equation, International Communications in Heat and Mass Transfer, 35 (2008) 93.CrossRefGoogle Scholar
  17. [[17]
    S. Liang and D. J. Jeffrey, Comparison of homotopy analysis method and homotopy perturbation method through an evolution equation, Communications in Nonlinear Science and Numerical Simulation, 14 (2009) 4057.MathSciNetMATHCrossRefGoogle Scholar
  18. [[18]
    F. T. Akyildiz, D. A. Siginer, K. Vajravelu and R. A. Van Gorder, Analytical and numerical results for the Swift-Hohenberg equation, Applied Mathematics and Computation, 216 (2010) 221.MathSciNetMATHCrossRefGoogle Scholar
  19. [[19]
    J.B. Swift and P.C. Hohenberg, Hydrodynamic fluctuations at the convective instability, Phys. Rev. A, 15 (1977) 319.CrossRefGoogle Scholar
  20. [[20]
    G.T. Dee and W. van Saarloos, Bistable systems with propagating fronts leading to pattern formation, Phys. Rev. Lett., 60 (1988) 2641.CrossRefGoogle Scholar
  21. [[21]
    W. Zimmerman, Propagating fronts near a Lifschitz point, Phys. Rev. Lett., 66 (1991) 1546.CrossRefGoogle Scholar
  22. [[22]
    G. Caginalp and P.C. Fife, Higher order phase field models and detailed anisotropy, Phys. Rev. B, 34 (1986) 4940.MathSciNetCrossRefGoogle Scholar
  23. [[23]
    R.A. Gardner and C.K.R.T. Jones, Traveling waves of a perturbed diffusion equation arising in a phase field model, Indiana Univ. Math. J., 38 (1989) 1197.MathSciNetGoogle Scholar
  24. [[24]
    J. Chaparova, L.A. Peletier and S. Tersian, Existence and nonexistence of nontrivial solutions of semilinear sixth order ordinary differential equations, Applied Mathematics Letters, 17 (2004) 1207.MathSciNetMATHCrossRefGoogle Scholar
  25. [25]
    J. Chaparova, L.A. Peletier and S. Tersian, Existence and nonexistence of nontrivial solutions of semilinear fourth-and sixth-order ordinary differential equations, Adv. Diff. Eqns., 8 (2003) 1237.MathSciNetMATHGoogle Scholar
  26. [26]
    S. Day, Y. Hiraoka, K. Mischaikow and T. Ogawa, Rigorous numerics for global dynamics of the Swift-Hohenberg equation, SIAM Journal on Applied Dynamical Systems, 4 (2005) 1.MathSciNetMATHCrossRefGoogle Scholar
  27. [27]
    C.I. Christov and J. Pontes, Numerical scheme for Swift-Hohenberg equation with strict implementation of Lyapunov functional, Mathematical and Computer Modelling, 35 (2002) 87.MathSciNetMATHCrossRefGoogle Scholar
  28. [28]
    M.O. Caceres, About the stochastic multiplicative Swift-Hohenberg equation: The eigenvalue problem, Chaos, Solitons & Fractals, 6 (1995) 43.MathSciNetMATHCrossRefGoogle Scholar
  29. [29]
    L.A. Peletier and V. Rottschäfer, Pattern selection of solutions of the Swift-Hohenberg equation, Physica D, 194 (2004) 95.MathSciNetMATHCrossRefGoogle Scholar
  30. [30]
    E. Atkinson, An Introduction to Numerical Analysis, John Wiley & Sons, Inc, 1989.Google Scholar
  31. [31]
    E.B. Saff and R.S. Varga (Eds.), Padé and Rational Approximation (Tampa, 1976), Acad. Press, 1977.Google Scholar
  32. [32]
    R. A. Van Gorder and K. Vajravelu, Convective heat transfer in a conducting fluid over a permeable stretching surface with suction and internal heat generation / absorption, Applied Mathematics and Computation, 217 (2011) 5810.MathSciNetMATHCrossRefGoogle Scholar
  33. [33]
    H. A. Attia, On the effectiveness of porosity on stagnation point flow towards a stretching surface with heat generation, Computational Materials Science, 38 (2007) 741.CrossRefGoogle Scholar
  34. [34]
    A. R. A. Khaled and K. Vafai, The role of porous media in modeling flow and heat transfer in biological tissues, Int. J. Heat Mass Transfer, 46 (2003) 4989.MATHCrossRefGoogle Scholar
  35. [35]
    R. Nazar, M. Amin, D. Philip and I. Pop, Stagnation point flow of a micropolar fluid towards a stretching sheet, Int. J. Non-Linear Mech., 39 (2004) 1227.MATHCrossRefGoogle Scholar
  36. [36]
    L. J. Crane, Flow past a stretching plate, Z. Angew. Math. Phys., 21 (1970) 645.CrossRefGoogle Scholar
  37. [37]
    U. Ascher, R. Mattheij and R. Russell, Numerical solution of boundary value problems or ordinary differential equations, SIAM Classics in Applied Mathematics, 1995.Google Scholar
  38. [38]
    U. Ascher and L. Petzold, Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, SIAM, Philadelphia, 1998.MATHCrossRefGoogle Scholar
  39. [39]
    R. A. Van Gorder and K. Vajravelu, Hydromagnetic stagnation point flow of a second grade fluid over a stretching sheet, Mechanics Research Communications, 37 (2010) 113.MathSciNetCrossRefGoogle Scholar
  40. [40]
    H. Schlichting, Boundary Layer Theory, McGraw-Hill, 1960.Google Scholar
  41. [41]
    K. Hiemenz, Die Grenzschicht an einem in den gleichformigen Flussigkeitsstrom eingetauchten geraden Kreiszylinder, Dinglers Polytech J., 326 (1911) 321.Google Scholar
  42. [42]
    L. Howarth, On the solution of the laminar boundary layer equations, Proc. Roy. Soc. London A, 164 (1938) 547.MATHCrossRefGoogle Scholar
  43. [43]
    K. Gersten, H.D. Papenfuss and J.F. Gross, Influence of the Prandtl number on secondorder heat transfer due to surface curvature at a three dimensional stagnation point, Int. J. Heat Mass Transfer, 21 (1978) 275.CrossRefGoogle Scholar
  44. [44]
    S.J. Liao, A uniformly valid analytic solution of two-dimensional viscous flow over a semiinfinite flat plate, J. Fluid Mech., 385 (1999) 101.MathSciNetMATHCrossRefGoogle Scholar
  45. [45]
    P.D. Weidman and V. Putkaradze, Axisymmetric stagnation flow obliquely impinging on a circular cylinder, Eur. J. Mech. B/Fluids, 22 (2003) 123.CrossRefGoogle Scholar
  46. [46]
    J.T. Stuart, The viscous flow near a stagnation point when the external flow has uniform vorticity, J. Aerospace Sci., 26 (1959) 124.MATHCrossRefGoogle Scholar
  47. [47]
    K.J. Tamada, Two-dimensional stagnation point flow impinging obliquely on a plane wall, J. Phys. Soc. Jpn., 46 (1979) 310.CrossRefGoogle Scholar
  48. [48]
    N. Takemitsu and Y. Matunobu, Unsteady stagnation-point flow impinging obliquely on an oscillating flat plate, J. Phys. Soc. Jpn., 47 (1979) 1347.MathSciNetCrossRefGoogle Scholar
  49. [49]
    J.M. Dorrepaal, An exact solution of the Navier-Stokes equation which describes nonorthogonal stagnation-point flow in two dimensions, J. Fluid Mech., 163 (1986) 141.MathSciNetMATHCrossRefGoogle Scholar
  50. [50]
    J.M. Dorrepaal, Is two-dimensional oblique stagnation-point flow unique, Canad. Appl. Math. Quart., 8 (2000) 61.MathSciNetMATHCrossRefGoogle Scholar
  51. [51]
    F. Labropulu, J.M. Dorrepaal and O.P. Chandna, Oblique flow impinging on a wall with suction or blowing, Acta Mech., 115 (1996) 15.MATHCrossRefGoogle Scholar
  52. [52]
    B.S. Tilley and P.D. Weidman, Oblique two-fluid stagnation-point flow, Eur. J. Mech. B/Fluids, 17 (1998) 205.MathSciNetMATHCrossRefGoogle Scholar
  53. [53]
    J.N. Kapur and R.C. Srivastava, Similar solutions of the boundary layer equations for power law fluids, Z. Angew. Math. Phys., 14 (1963) 383.MathSciNetMATHCrossRefGoogle Scholar
  54. [54]
    M.K. Maiti, Axially-symmetric stagnation point flow of power law fluids, Z. Angew. Math. Phys., 16 (1965) 594.MathSciNetCrossRefGoogle Scholar
  55. [55]
    S.R. Koneru and R. Manohar, Stagnation point flows of non-newtonian power law fluids, Z. Angew. Math. Phys., 19 (1968) 84.MATHCrossRefGoogle Scholar
  56. [56]
    Y.G. Sapunkov, Similarity solutions of boundary layer of non-Newtonian fluids in magnetohydrodynamics, Mech. Zidkosti I Gaza, 6 (1967) 77 (in Russian).Google Scholar
  57. [57]
    D.S. Djukic, Hiemenz magnetic flow of power-law fluids, Trans. ASME J. Appl. Mech., 41 (1974) 822.CrossRefGoogle Scholar
  58. [58]
    T.R. Mahapatra and A.S. Gupta, Heat transfer in stagnation-point flow towards a stretching sheet, Heat and Mass Transfer, 38 (2002) 517.CrossRefGoogle Scholar
  59. [59]
    R. Nazar, N. Amin, D. Filip and I. Pop, Stagnation point flow of a micropolar fluid towards a stretching sheet, Int. J. Non-Linear Mech., 39 (2004) 1227.MATHCrossRefGoogle Scholar
  60. [60]
    Y.Y. Lok, N. Amin and I. Pop, Comments on: Steady two-dimensional oblique stagnationpoint flow towards a stretching surface, Fluid Dynamics Research, 39 (2007) 505.MathSciNetMATHCrossRefGoogle Scholar
  61. [61]
    M. Reza and A.S. Gupta, Steady two-dimensional oblique stagnation-point flow towards a stretching surface, Fluid Dyn. Res., 37 (2005) 334.MathSciNetMATHCrossRefGoogle Scholar
  62. [62]
    T.R. Mahapatra, S. Dholey and A.S. Gupta, Heat Transfer in oblique stagnation-point flow of an incompressible viscous fluid towards a stretching surface, Heat and Mass Transfer, 43 (2007) 767.CrossRefGoogle Scholar
  63. [63]
    J. Paullet and P. Weidman, Analysis of stagnation point flow toward a stretching sheet, Int. J. Non-Linear Mech., 42 (2007) 1084.MATHCrossRefGoogle Scholar
  64. [64]
    Y.Y. Lok, N. Amin and I. Pop, Non-orthogonal stagnation point flow towards a stretching sheet, Int. J. Non-Linear Mech., 41 (2006) 622.CrossRefGoogle Scholar
  65. [65]
    Y.Y. Lok, N. Amin and I. Pop, Mixed convection flow near a non-orthogonal stagnation point towards a stretching vertical plate, Int. J. Heat Mass Transfer, 50 (2007) 4855.MATHCrossRefGoogle Scholar
  66. [66]
    Y.Y. Lok, N. Amin, D. Campean and I. Pop, Steady mixed connection flow of a micropolar fluid near the stagnation point of a vertical surface, Int. J. Numer. Method. Heat Fluid Flow, 15 (2005) 654.CrossRefGoogle Scholar
  67. [67]
    Y.Y. Lok, N. Amin and I. Pop, Mixed convection near a non-orthogonal stagnation point flow on a vertical plate with uniform surface heat flux, Acta Mech., 186 (2006) 99.MATHCrossRefGoogle Scholar
  68. [68]
    N. Ramachandran, T.S. Chen and B.F. Armaly, Mixed convection in stagnation flows adjacent to vertical surfaces, ASME J. Heat Transfer, 110 (1988) 373.CrossRefGoogle Scholar
  69. [69]
    A. Ishak, K. Jafar, R. Nazar and I. Pop, MHD stagnation point flow towards a stretching sheet, Physica A, 388 (2009) 3377.CrossRefGoogle Scholar
  70. [70]
    T.R. Mahapatra and A.S. Gupta, Magnetohydrodynamic stagnation-point flow towards a stretching sheet, Acta Mech., 152 (2001) 191.MATHCrossRefGoogle Scholar
  71. [71]
    T.R. Mahapatra, S.K. Nandy and A.S. Gupta, Magnetohydrodynamic stagnation-point flow of a power-law fluid towards a stretching surface, Int. J. Non-Linear Mech., 44 (2009) 124.MATHCrossRefGoogle Scholar
  72. [72]
    Z. Ziabakhsh, G. Domairry and H.R. Ghazizadeh, Analytical solution of the stagnationpoint flow in a porous medium by using the homotopy analysis method, Journal of the Taiwan Institute of Chemical Engineers, 40 (2009) 91.CrossRefGoogle Scholar
  73. [73]
    Q. Wu, S. Weinbaum and Y. Andreopoulos, Stagnation-point flow in a porous medium, Chem. Eng. Sci., 60 (2005) 123.CrossRefGoogle Scholar
  74. [74]
    S.A. Kechil and I. Hashim, Approximate analytical solution for MHD stagnation-point flow in porous media, Communications in Nonlinear Science and Numerical Simulation, 14 (2009) 1346.CrossRefGoogle Scholar
  75. [75]
    R.S. Rivlin and J.L. Ericksen, Stress deformation relations for isotropic materials, J. Rat. Mech. Anal., 4 (1955) 323.MathSciNetMATHGoogle Scholar
  76. [76]
    J.E. Dunn and K.R. Rajagopal, Fluids of differential type: Critical review and thermodynamic analysis, Int. J. Engng. Sci., 33 (1995) 689.MathSciNetMATHCrossRefGoogle Scholar
  77. [77]
    K.R. Rajagopal, A.S. Gupta and T.A. Na, A note on the Faulkner-Skan flows of a non-Newtonian fluid, Int. J. Non-Linear Mech., 18 (1983) 313.MathSciNetMATHCrossRefGoogle Scholar
  78. [78]
    K. Vajravelu and D. Rollins, Heat transfer in a viscoelastic fluid over a stretching sheet, J. Math. Anal. Appl., 158 (1991) 241.MathSciNetMATHCrossRefGoogle Scholar
  79. [79]
    M.S. Sarma and B.N. Rao, Heat transfer in a viscoelastic fluid over a stretching sheet, J. Math. Anal. Appl., 222 (1998) 268.MathSciNetMATHCrossRefGoogle Scholar
  80. [80]
    W.C. Troy, E.A. Overman, G.B. Ermentrout and J.P. Keener, Uniqueness of flow of a second order fluid past a stretching sheet, Quart. Appl. Math., 44 (1987) 753.MathSciNetMATHGoogle Scholar
  81. [81]
    W.D. Chang, The nonuniqueness of the flow of a viscoelastic fluid over a stretching sheet, Quart. Appl. Math., 47 (1989) 365.MathSciNetMATHGoogle Scholar
  82. [82]
    P.S. Lawrence and B.N. Rao, Reinvestigation of the nonuniqueness of the flow of a viscoelastic fluid over a stretching sheet, Quart. Appl. Math., 51 (1993) 401.MathSciNetMATHGoogle Scholar
  83. [83]
    W.D. Chang, N.D. Kazarinoff and C. Lu, A new family of explicit solutions for the similarity equations modelling flow of a non-Newtonian fluid over a stretching sheet, Arch. Rat. Mech. Anal., 113 (1991) 191.MathSciNetMATHCrossRefGoogle Scholar
  84. [84]
    K. Vajravelu and T. Roper, Flow and heat transfer in a second grade fluid over a stretching sheet, Int. J. Non-Linear Mech., 34 (1999) 1031.CrossRefGoogle Scholar
  85. [85]
    K. Vajravelu and D. Rollins, Hydromagnetic flow of a second grade fluid over a stretching sheet, Applied Mathematics and Computation, 148 (2004) 783.MathSciNetMATHCrossRefGoogle Scholar
  86. [86]
    A.D. Barinberg, A.B. Kapusta and B.V. Chekin, Magnitnaya Gidrodinamika (English translation), 11 (1975) 111.Google Scholar
  87. [87]
    T. Hayat, Z. Abbas and I. Pop, Mixed convection in the stagnation point flow adjacent to a vertical surface in a viscoelastic fluid, Int. J. Heat Mass Transfer, 51 (2008) 3200.MATHCrossRefGoogle Scholar
  88. [88]
    M. S. Abel and N. Mahesha, Heat transfer in MHD viscoelastic fluid flow over a stretching sheet with variable thermal conductivity, non-uniform heat source and radiation, Applied Mathematical Modelling, 32 (2008) 1965.MathSciNetMATHCrossRefGoogle Scholar
  89. [89]
    M. Ayub, H. Zaman, M. Sajid and T. Hayat, Analytical solution of stagnation-point flow of a viscoelastic fluid towards a stretching surface, Communications in Nonlinear Science and Numerical Simulation, 13 (2008) 1822.MathSciNetMATHCrossRefGoogle Scholar
  90. [90]
    T. Hayat, Z. Abbas and M. Sajid, MHD stagnation-point flow of an upper-convected Maxwell fluid over a stretching surface, Chaos, Solitons & Fractals, 39 (2009) 840.MATHCrossRefGoogle Scholar
  91. [91]
    C.-H. Chen, Magneto-hydrodynamic mixed convection of a power-law fluid past a stretching surface in the presence of thermal radiation and internal heat generation/absorption, Int. J. Non-Linear Mech., 44 (2009) 596.MATHCrossRefGoogle Scholar
  92. [92]
    J.C. Misra and G.C. Shit, Biomagnetic viscoelastic fluid flow over a stretching sheet, Applied Mathematics and Computation, 210 (2009) 350.MathSciNetMATHCrossRefGoogle Scholar
  93. [93]
    K.V. Prasad, D. Pal, V. Umesh and N.S. P. Rao, The effect of variable viscosity on MHD viscoelastic fluid flow and heat transfer over a stretching sheet, Communications in Nonlinear Science and Numerical Simulation, 15 (2010) 331.MATHCrossRefGoogle Scholar
  94. [94]
    A. Chakrabarti and A.S. Gupta, Hydromagnetic flow and heat transfer over a stretching sheet, Quart. Appl. Math., 37 (1979) 73.MATHGoogle Scholar
  95. [95]
    K. Vajravelu and D. Rollins, Heat transfer in an electrically conducting fluid over a stretching sheet, Int. J. Non-Linear Mech., 27 (1992) 265.MATHCrossRefGoogle Scholar
  96. [96]
    H.I. Andersson, An exact solution of the Navier-Stokes equations for magnetohydrodynamic flow, Acta Mech., 113 (1995) 241.MathSciNetMATHCrossRefGoogle Scholar
  97. [97]
    I. Pop and T.Y. Na, A note on MHD flow over a stretching permeable surface, Mech. Res. Commun., 25 (1998) 263.MathSciNetMATHCrossRefGoogle Scholar
  98. [98]
    M.S. Abel and M.M. Nandeppanavar, Heat transfer in MHD viscoelastic boundary layer flow over a stretching sheet with non-uniform heat source/sink, Communications in Nonlinear Science and Numerical Simulation, 14 (2009) 2120.MathSciNetMATHCrossRefGoogle Scholar
  99. [99]
    H.S. Takhar, A.J. Chamkha and G. Nath, Unsteady three-dimensional MHD boundarylayer flow due to the impulsive motion of a stretching surface, Acta Mech., 146 (2001) 59.MATHCrossRefGoogle Scholar
  100. [100]
    P.D. McCormak and L.J. Crane, Physical Fluid Dynamics, Academic Press, New York, 1973.Google Scholar
  101. [101]
    P.S. Gupta and A.S. Gupta, Heat and mass transfer on a stretching sheet with suction and blowing, J. Chem. Eng., 55 (1977) 744.Google Scholar
  102. [102]
    P. Carragher and L.J. Crane, Heat transfer on a continuous stretching sheet, J. Appl. Math. Mech. (ZAMM), 62 (1982) 564.CrossRefGoogle Scholar
  103. [103]
    B.K. Dutta, Heat transfer from a stretching sheet with uniform suction and blowing, Acta Mech., 78 (1989) 255.MATHCrossRefGoogle Scholar
  104. [104]
    K. Vajravelu and A. Hadjicolaou, Convective heat transfer in an electrically conducting fluid at a stretching surface with uniform free stream, Int. J. Eng. Sci., 35 (1997) 1237.MATHCrossRefGoogle Scholar
  105. [105]
    E. Magyari and B. Keller, Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface, J. Phys. D: Appl. Phys., 32 (1999) 577.CrossRefGoogle Scholar
  106. [106]
    E. Magyari and B. Keller, Exact solutions for self-similar boundary-layer flows induced by permeable stretching surfaces, Eur. J. Mech. B/Fluids, 19 (2000) 109.MathSciNetMATHCrossRefGoogle Scholar
  107. [107]
    S.J. Liao and I. Pop, Explicit analytic solution for similarity boundary layer equations, Int. J. Heat Mass Transfer, 47 (2004) 75.CrossRefGoogle Scholar
  108. [108]
    K.R. Rajagopal, T.Y. Na and A.S. Gupta, Flow of a visco-elastic fluid over a stretching sheet, Rheol. Acta, 23 (1984) 213.CrossRefGoogle Scholar
  109. [109]
    K. Vajravelu and D. Rollins, Heat transfer in a viscoelastic fluid over a stretching sheet, J. Math. Anal. Appl., 158 (1991) 241.MathSciNetMATHCrossRefGoogle Scholar
  110. [110]
    J.B. McLeod and K.R. Rajagopal, On the uniqueness of flow of a Navier-Stokes fluid due to a stretching boundary, Arch. Ration. Mech. Anal., 98 (1987) 385.MathSciNetMATHCrossRefGoogle Scholar
  111. [111]
    W.C. Troy, E.A. Overman II, G.B. Ermen-Trout and J.P. Keener, Uniqueness of flow of a second-order fluid past a stretching sheet, Quart. Appl. Math., 44 (1987) 753.MathSciNetMATHGoogle Scholar
  112. [112]
    K. Vajravelu and J.R. Cannon, Fluid flow over a nonlinear stretching sheet, Applied Mathematics and Computation, 181 (2006) 609.MathSciNetMATHCrossRefGoogle Scholar
  113. [113]
    F. T. Akyildiz, D. A. Siginer, K. Vajravelu, J. R. Cannon and R. A. Van Gorder, Similarity solutions of the boundary layer equation for a nonlinearly stretching sheet, Mathematical Methods in the Applied Sciences, 33 (2010) 601.MathSciNetMATHGoogle Scholar
  114. [114]
    R. A. Van Gorder and K. Vajravelu, A general class of coupled nonlinear differential equations arising in self-similar solutions of convective heat transfer problems, Applied Mathematics and Computation, 217 (2010) 460.MathSciNetMATHCrossRefGoogle Scholar
  115. [115]
    H. Xu, S.J. Liao and G.X. Wu, A family of new solutions on the wall jet, Eur. J. Mech. B/Fluid, 27 (2008) 322.MathSciNetMATHCrossRefGoogle Scholar
  116. [116]
    S.J. Liao, A new branch of boundary layer flows over a permeable stretching plate, Int. J. Non-linear Mech., 42 (2007) 819.MATHCrossRefGoogle Scholar
  117. [117]
    S.J. Liao, A new branch of solutions of boundary-layer flows over an impermeable stretched plate, Int. J. Heat Mass Transfer, 48 (2005) 2529.MATHCrossRefGoogle Scholar
  118. [118]
    S. Abbasbandy, E. Magyari and E. Shivanian, The homotopy analysis method for multiple solutions of nonlinear boundary value problems, Communications in Nonlinear Science and Numerical Simulation, 14 (2009) 3530.MathSciNetMATHCrossRefGoogle Scholar
  119. [119]
    R.A. Van Gorder and K. Vajravelu, Multiple solutions for hydromagnetic flow of a second grade fluid over a stretching or shrinking sheet, Quart. Appl. Math., 69 (2011) 405.MathSciNetMATHGoogle Scholar
  120. [120]
    R. A. Van Gorder, High-order nonlinear boundary value problems admitting multiple exact solutions with application to the fluid flow over a sheet, Applied Mathematics and Computation, 216 (2010) 2177.MathSciNetMATHCrossRefGoogle Scholar
  121. [121]
    T.C. Chiam, Stagnation-point flow towards a stretching plate, J. Phys. Soc. Jpn., 63 (1994) 2443.CrossRefGoogle Scholar
  122. [122]
    T.R. Mahapatra and A.S. Gupta, Heat transfer in stagnation-point flow towards a stretching sheet, Heat and Mass Transfer, 38 (2002) 517.CrossRefGoogle Scholar
  123. [123]
    M. Reza and A.S. Gupta, Steady two-dimensional oblique stagnation-point flow towards a stretching surface, Fluid Dyn. Res., 27 (2005) 334.MathSciNetCrossRefGoogle Scholar
  124. [124]
    J.T. Stuart, The viscous flow near a stagnation point when the external flow has uniform vorticity, J. Aerosp. Sci., 26 (1959) 124.MATHCrossRefGoogle Scholar
  125. [125]
    K.J. Tamada, Two-dimensional stagnation point flow impinging obliquely on a plane wall, J. Phys. Soc. Jpn., 46 (1979) 310.CrossRefGoogle Scholar
  126. [126]
    J.M. Dorrepaal, An exact solution of the Navier-Stokes equation which describes non-orthogonal stagnation-point flow in two dimensions, J. Fluid Mech., 163 (1986) 141.MathSciNetMATHCrossRefGoogle Scholar
  127. [127]
    F. Labropulu, J.M. Dorrepaal and O.P. Chandna, Oblique flow impinging on a wall with suction or blowing, Acta Mech., 115 (1996) 15.MATHCrossRefGoogle Scholar
  128. [128]
    M. Amaouche and D. Boukari, Influence of thermal convection on nonorthogonal stagnation point flow, Int. J. Thermal Sci., 42 (2003) 303.CrossRefGoogle Scholar

Copyright information

© Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Kuppalapalle Vajravelu
    • 1
  • Robert A. van Gorder
    • 1
  1. 1.Department of MathematicsUniversity of Central FloridaOrlandoUSA

Personalised recommendations