Advertisement

Observational Tests of Atmosphere Evolution Hypotheses

  • Helmut Lammer
Chapter
Part of the SpringerBriefs in Astronomy book series (BRIEFSASTRON)

Abstract

Spacecraft observations of hydrogen Energetic Neutral Atoms (ENAs) and the application of advanced numerical models developed a relevant remote-sensing technique in planetary and space science. Hydrogen ENAs are produced whenever a solar- or stellar- wind proton interacts via charge exchange with a neutral atom from an upper atmosphere so that their signals contain the information from the structure of the upper atmosphere and its neutral gas density, as well as that from the plasma environment around a planetary obstacle. By combining these observations with theoretical models of the solar wind plasma flow and its interaction with the upper atmospheres of planetary bodies and comets can be analyzed and studied to a great accuracy. From comparative studies between Solar System planets and exoplanets one can expect that similar processes will also occur within their environments. Exoplanets which are in orbit locations closer to their host stars, or within close-in habitable zones of active dwarf stars can be seen as proxies of Solar System planets during the time of the young Sun period.

Keywords

Solar Wind Stellar Wind Terrestrial Planet Habitable Zone Host Star 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Hovestadt, D., Scholer, M.: Radiation belt-produced energetic hydrogen in interplanetary space. J. Geophys. Res. 81, 5039–5042 (1976)ADSCrossRefGoogle Scholar
  2. 2.
    Krimigis, S.M., Kohl, J.W., Armstrong, T.P.: The magnetospheric contribution to the quiet-time low energy nucleon spectrum in the vicinity of Earth. Geophys. Res. Lett. 2, 457–460 (1975)ADSCrossRefGoogle Scholar
  3. 3.
    Fuselier, S.A., Funsten, H.O., Heirtzler, D., Janzen, P., Kucharek, H., McComas, D.J., Möbius, E., Moore, T.E., Petrinec, S.M., Reisenfeld, D.B., Schwadron, N.A., Trattner, K.J., Wurz, P.: Energetic neutral atoms from the Earth’s subsolar magnetopause. Geophys. Res. Lett. 37(13), (2010)Google Scholar
  4. 4.
    Collier, M.R., Moore, T.E., Ogilvie, K.W., Chornay, D., Keller, J.W., 14 co-authors: Observations of neutral atoms from the solar wind. J. Geophys. Res. 106, 24893–24906 (2001)Google Scholar
  5. 5.
    Futaana, Y., Barabash, S., Grigoriev, A., Holmström, M., Kallio, E., 42 co-authors: First ENA observations at Mars: ENA emissions from the martian upper atmosphere. Icarus 182, 424–430 (2006)Google Scholar
  6. 6.
    Gunell, H., Kallio, E., Jarvinen, R., Janhunen, P., Holmström, M., Dennerl, K.: Simulations of solar wind charge exchange X-ray emissions at Venus. Geophys. Res. Lett. 34, L03107 (2007)CrossRefGoogle Scholar
  7. 7.
    Mura, A., Orsini, S., Milillo, A., Kallio, E., Galli, A.: and 30 co-authors: ENA detection in the dayside of Mars: ASPERA-3 NPD statistical study. Planet. Space Sci. 56, 840–845 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Galli, A., Wurz, P., Bochsler, P., Barabash, S., Grigoriev, A., Futaana, Y., Holmström, M., 44 co-authors: First observation of energetic neutral atoms in the Venus environment. Planet. Space Science 56, 807–811 (2008)Google Scholar
  9. 9.
    Lichtenegger, H.I.M., Lammer, H., Kulikov, Yu.N., Kazeminejad, S., Molina-Cuberos, G.H., Rodrigo, R., Kazeminejad, B., Kirchengast, G.: Effects of low energetic neutral atoms on martian and venusian dayside exospheric temperature estimations. Space Sci. Rev. 125, 469–501 (2006)ADSGoogle Scholar
  10. 10.
    Barth, C.A., Fastie, W.G., Hord, C.W., Pearce, J.B., Kelly, K.K., Stewart, A.I., Thomas, G.E., Anderson, G.P., Raper, O.F.: Mariner 6: ultraviolet spectrum of Mars upper atmosphere. Science 165, 1004–1005 (1969)ADSCrossRefGoogle Scholar
  11. 11.
    Barth, C.A.: Interpretation of the Mariner 5 Lyman alpha measurements. J. Atmos. Sci. 25, 564–567 (1968)ADSCrossRefGoogle Scholar
  12. 12.
    Keating, G.M., Bougher, S.W., Zurek, R.W., Tolson, R.H., Cancro, G.J., 23 co-authors: The structure of the upper atmosphere of Mars: in situ accelerometer measurements from Mars Global Surveyor. Science 279, 1672–1676 (1998)Google Scholar
  13. 13.
    Lichtenegger, H.I.M., Lammer, H., Vogl, D., Bauer, S.J.: Possible temperature effects of energetic neutral hydrogen atoms on the martian exosphere. Adv. Space Res. 33, 140–144 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    Mitchell, D.G., Paranicas, C.P., Mauk, B.H., Roelof, E.C., Krimigis, S.M.: Energetic neutral atoms from Jupiter measured with the Cassini magnetospheric imaging instrument: time dependence and composition. J. Geophys. Res. 109(A9), A09S11 (2004)Google Scholar
  15. 15.
    Dandouras, J., Amsif, A.: Production and imaging of energetic neutral atoms from Titan’s exosphere: a 3-D model. Planet. Space Sci. 47, 1355–1369 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    Mitchell, D.G., Brandt, P.C., Roelof, E.C., Dandouras, J., Krimigis, S.M., Mauk, B.H.: Energetic neutral atom emissions from Titan interaction with Saturn’s magnetosphere. Science 308, 989–992 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    Gruntman, M., Roelof, E.C., Mitchell, D.G., Fahr, H.J., Funsten, H.O., McComas, D.J.: Energetic neutral atom imaging of the heliospheric boundary region. J. Geophys. Res. 106, 15767–15782 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    Wood, B.E., Müller, H.-R., Zank, G., Linsky, J.L.: Measured mass loss rates of solar-like stars as a function of age and activity. ApJ 574, 412–425 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    Wood, B.E., Müller, H.-R., Zank, G.P., Linsky, J.L., Redfield, S.: New mass loss measurements from astrospheric Ly-\(\alpha \) absorption. ApJ 628, L143–L146 (2005)Google Scholar
  20. 20.
    Holmström, M., Ekenbäck, A., Selsis, F., Penz, T., Lammer, H., Wurz, P.: Energetic neutral atoms as the explanation for the high-velocity hydrogen around HD 209458b. Nature 451, 670–679 (2010)Google Scholar
  21. 21.
    Ekenbäck, A., Holmström, M., Wurz, P., Grießmeier, J.-M., Lammer, H., Selsis, F., Penz, T.: Energetic neutral atoms around HD 209458b: estimations of magnetospheric properties. ApJ 709, 670–679 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    Lammer, H., Kislyakova, K.G., Holmström, H., Khodachenko, M.L.: Griemeier, J.-M.: Hydrogen ENA-cloud observation and modeling as a tool to study star-exoplanet interaction. Astrophys. Space Sci. 335, 9–23 (2011)Google Scholar
  23. 23.
    Charbonneau, D., Brown, T.M., Latham, Mayor, D.W.: Detection of planetary transits across a Sun-like star. ApJ 529, L45–L48 (2000)Google Scholar
  24. 24.
    Guillot, T., Burrows, A., Hubbard, W.B., Lunine, J.I., Saumon, D.: Giant planets at small orbital distances. ApJ 459, L35–L38 (1996)ADSCrossRefGoogle Scholar
  25. 25.
    Hubbard, W.B., Burrows, A., Lunine, J.I.: Theory of giant planets. Ann. Rev. Astron. Astrophys. 40, 103–136 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    Lammer, H., Selsis, F., Ribas, I., Guinan, E.F., Bauer, S.J., Weiss, W.W.: Atmospheric loss of exoplanets resulting from stellar X-Ray and extreme-ultraviolet heating. ApJ 598, L121–L124 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    Vidal-Madjar, A.: Lecavelier des Etangs, A., Désert, J.M., Ballester, G.E., Ferlet, R., Hébrard, G., Mayor, M.: An extended upper atmosphere around the extrasolar planet HD209458 b. Nature 422, 143–146 (2003)Google Scholar
  28. 28.
    Ben-Jaffel, L.: Exoplanet HD 209458b: inated hydrogen atmosphere but no sign of evaporation. ApJ 671, L61–L64 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    Ben-Jaffel, L., Sona Hosseini, S.: On the existence of energetic atoms in the upper atmosphere of exoplanet HD 209458b. ApJ 709, 1284–1296 (2010)Google Scholar
  30. 30.
    Lecavelier des Etangs, A., Ehrenreich, D., Vidal-Madjar, A., Ballester, G.E., Désert, J.-M., Ferlet, R., Hébrard, G., Sing, D.K., Tchakoumegni, K.-O., Udry, S., 2010. Evaporation of the planet HD 189733b observed in H I Lyman-\(\alpha \). A&A 514, A72 (2010)Google Scholar
  31. 31.
    Guo, J.H.: Escaping particle fluxes in the atmospheres of close-in exoplanets. I. Model of hydrogen. ApJ 733, 98, 10 (2011)Google Scholar
  32. 32.
    Penz, T., Erkaev, N.V., Kulikov, Yu.N., Langmayr, D., Lammer, H., Micela, G., Cecchi-Pestellini, C., Biernat, H.K., Selsis, F., Barge, P., Deleuil, M., Léger, A.: Mass loss from “Hot Jupiters”- Implications for CoRoT discoveries, Part II: Long time thermal atmospheric evaporation modeling. Planet. Space Sci. 56, 1260–1272 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    Yelle, R.V.: Aeronomy of extra-solar giant planets at small orbital distances. Icarus 170, 167–179 (2004)ADSCrossRefGoogle Scholar
  34. 34.
    Tian, F., Toon, O.B., Pavlov, A.A., De Sterck, H.: Transonic hydrodynamic escape of hydrogen from extrasolar planetary atmospheres. ApJ 621, 1049–1060 (2005)ADSCrossRefGoogle Scholar
  35. 35.
    García Muñoz, A.: Physical and chemical aeronomy of HD 209458b. Planet. Space Sci. 55, 1426–1455 (2007)Google Scholar
  36. 36.
    Koskinen, T.T., Yelle, R.V., Lavvas, P., Lewis, N.K.: Characterizing the thermosphere of HD209458 b with UV tranist observations. ApJ 723, 116–128 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    Erkaev, N.V., Kulikov, Yu.N., Lammer, H., Selsis, F., Langmayr, D., Jaritz, G.F., Biernat, H.K.: Roche lobe effects on the atmospheric loss of “Hot Jupiters”. A&A 472, 329–334 (2007)Google Scholar
  38. 38.
    Vidal-Madjar, A., Désert, J., Lecavelier des Etangs, A., Hébrard, G., Ballester, G.E., Ehrenreich, D., Ferlet, R., McConnell, J.C., Mayor, M., Parkinson, C.D.: Detection of oxygen and carbon in the hydrodynamically escaping atmosphere of the extrasolar planet HD 209458b. ApJ 604, L69–L72 (2004)Google Scholar
  39. 39.
    Linsky, J.L., Yang, H., France, K., Froning, C.S., Green, J.C., Stocke, J.T., Osterman, S.N.: Observations of mass loss from the transiting exoplanet HD 209458b. ApJ 717, 1291–1299 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    Fossati, L., Haswell, C.A., Froning, C.S., Hebb, L., Holmes, S., Kolb, U., Helling, C., Carter, A., Wheatley, P., Cameron, A.C., Loeillet, B., Pollacco, D., Street, R., Stempels, H.C., Simpson, E., Udry, S., Joshi, Y.C., West, R.G., Skillen, I., Wilson, D.: Metals in the exosphere of the highly irradiated planet WASP-12b. ApJ 714, L222–L227 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    Lammer, H., Odert, P., Leitzinger, M., Khodachenko, M.L., Panchenko, M., Kulikov, Yu.N, Zhang, T.L., Lichtenegger, H.I.M., Erkaev, N.V., Wuchterl, G., Micela, G., Penz, A., Biernat, H.K., Weingrill, J., Steller, M., Ottacher, H., Hasiba, J., Hanslmeier, A.: Determining the mass loss limit for close-in exoplanets: what can we learn from transit observations? A&A 506, 399–410 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    Erkaev, N.V., Penz, T., Lammer, H., Lichtenegger, H.I.M., Wurz, P., Biernat, H.K., Griessmeier, J.-M., Weiss, W.W.: Plasma and magnetic field parameters in the vicinity of short periodic giant exoplanets. ApJS 157, 396–401 (2005)ADSCrossRefGoogle Scholar
  43. 43.
    Murray-Clay, R.A., Chiang, E.I., Murray, N.: Atmospheric escape from hot Jupiters. ApJ 693, 23–42 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    Shematovich, V.I.: Suprathermal hydrogen produced by the dissociation of molecular hydrogen in the extended atmosphere of exoplanet HD 209458b. Sol. Syst. Res. 44, 96–103 (2010)ADSCrossRefGoogle Scholar
  45. 45.
    Khodachenko, M.L., Lammer, H., Lichtenegger, H.I.M., Langmayr, D., Erkaev, N.V., Grießmeier, J.M., Leitner, M., Penz, T., Biernat, H.K., Motschmann, U., Rucker, H.O.: Mass loss of “Hot Jupiters”: implications for CoRoT discoveries. Part I: the importance of magnetospheric protection of a planet against ion loss caused by coronal mass ejections. Planet. Space Sci. 55, 631–642 (2007)ADSCrossRefGoogle Scholar
  46. 46.
    Li, S-L.: Miller, N., Lin, D.N.C., Fortney, J.J.: WASP-12b as a prolate, inflated and disrupting planet from tidal dissipation. Nature 463, 1054–1056 (2010)Google Scholar
  47. 47.
    Lammer, H., Kislyakova, K.G., Odert, P., Leitzinger, M., Khodachenko, M.L., Holmströem, M., Hanslmeier, A.: Exoplanet upper atmosphere envrionment characterization. In: Richards, M., Hubeny, I. (eds.) From Interacting Binaries to Exoplanets: Essential Modeling Tools, vol. 282, pp. 525–533. Cambridge University Press, Cambridge, Proceedings of the IAU (2012)Google Scholar
  48. 48.
    Lecavelier des Etangs, A., Vidal-Madjar, A., Désert, J.-M.: The origin of hydrogen around HD 209458b. Nature 456, E1 (2008)Google Scholar
  49. 49.
    Lammer, H., Eybl, V., Kislyakova, K.G., Weingrill, J., Holmström, M., Khodchenko, M.L., Kulikov, Yu.N, Reiners, A., Leitzinger, M., Odert, P., Xian Grüß, M., Dorner, B., Güdel, M., Hanslmeier, A.: UV transit observations of EUV-heated expanded thermospheres of Earth-like exoplanets around M-stars: testing atmosphere evolution scenarios. Astrophys. Space Sci. 335, 39–50 (2011)ADSCrossRefGoogle Scholar
  50. 50.
    Shustov, B., Sachov, M., Gomez de Castro, A.I., Ana, I., Pagano, I.: WSO-UV ultraviolet mission for the next decade. Astrophys. Space Sci. 320, 187–190 (2009)ADSCrossRefGoogle Scholar
  51. 51.
    Spreiter, J.R., Stahara, S.S.: A new predicative model for determining solar wind-terrestrial planet interactions. J. Geophys. Res. 85, 6769–6777 (1980)ADSCrossRefGoogle Scholar
  52. 52.
    Tian, F., Kasting, J.F., Liu, H., Roble, R.G.: Hydrodynamic planetary thermosphere model: 1. The response of the Earth’s thermosphere to extreme solar EUV conditions and the significance of adiabatic cooling. J. Geophys. Res. 113, (2008). doi: 10.1029/2007JE002946
  53. 53.
    Tian, F., Solomon, S.C., Qian, L., Lei, J., Roble, R.G.: Hydrodynamic planetary thermosphere model: 2. Coupling of an electron transport/energy deposition model. J. Reophys. Res. 113, E07005 (2008)Google Scholar
  54. 54.
    Tian, F.: Thermal escape from super Earth atmospheres in the habitable zones of M Stars. ApJ 703, 905–909 (2009)ADSCrossRefGoogle Scholar
  55. 55.
    Lichtenegger, H.I.M., Lammer, H., Grießmeier, J.-M., Kulikov, Yu.N., von Paris, P., Hausleitner, W., Krauss, S., Rauer, H.: Aeronomical evidence for higher \(CO_2\) levels during Earth’s Hadean epoch. Icarus 210, 1–7 (2010)Google Scholar
  56. 56.
    Quirrenbach, A., Amado, P.J., Mandel, H., Caballero, J.A., Ribas, I., Reiners, A., Mundt, R.: and the CARMENES Consortium: CARMENES: Calar Alto high-resolution search for M dwarfs with exo-earths with a near-infrared echelle spectrograph. Astron. Soc. Pac. Conf. Ser. 77356, 37 (2010)Google Scholar
  57. 57.
    Mahadevan, S., Ramsey, L., Redman, S., Zonak, S., Wright, J., Wolszczan, A., Endl, M., Zhao, B.: The habitable zone planet finder project: a proposed high resolution NIR spectrograph for the Hobby Eberly Telescope (HET) to discover low mass exoplanets around M stars. Astron. Soc. Pac. Conf. Ser. 77356, 10 (2010)Google Scholar
  58. 58.
    Catala, C., The PLATO team: PLATO: PLAnetary Transits and Oscillations of stars. Exp. Astron. 23, 329–256 (2009)Google Scholar
  59. 59.
    Catala, C., The PLATO team: PLATO: PLAnetary transits and oscillations of stars. Community Asteros. 158, 330–336 (2009)Google Scholar
  60. 60.
    Lammer, H., Hanslmeier, A., Schneider, J., Stateva, I.K., 32 co-authors: Exoplanet status report: observation, characterization and evolution of habitable exoplanets and their host stars. Sol. Syst. Res. 44, 314–335 (2010)Google Scholar
  61. 61.
    Lammer, H., Kislyakova, K.G., Odert, P., Leitzinger, M., Schwarz, R., Pilat-Lohinger, E., Kulikov, Yu.N, Khodachenko, M.L., Güdel, M., Hanslmeier, A.: Pathways to Earth-like atmospheres: extreme ultraviolet (EUV)-powered escape of hydrogen-rich protoatmospheres. Orig. Life Evol. Biosph. 41, 503–522 (2012)ADSCrossRefGoogle Scholar
  62. 62.
    Lammer, H., Güdel, M., Kulikov, Yu.N, Ribas, I., Zaqarashvili, T.V., Khodachenko, M.L., Kislyakova, K.G., Gröller, H., Odert, P., Leitzinger, M., Fichtinger, B., Krauss, S., Hausleitner, W., Holmström, M., Sanz-Forcada, J., Lichtenegger, H.I.M., Hanslmeier, A., Shematovich, V.I., Bisikalo, D., Rauer, H., Fridlund, M.: Variability of solar/stellar activity and magnetic field and its influence on planetary atmosphere evolution. Earth Planets Space 63, 179–199 (2012)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  1. 1.Space Research InstituteAustrian Academy of SciencesGrazAustria

Personalised recommendations