Advertisement

Escape of Planetary Atmospheres

  • Helmut Lammer
Chapter
Part of the SpringerBriefs in Astronomy book series (BRIEFSASTRON)

Abstract

The extreme radiation and plasma environments during the period of the young active Sun/Stars have important implications for the evolution of planetary atmospheres and may be responsible that planets with a low gravity like early Mars most likely could never build up a dense atmosphere during the first few 100 Myr after their origin. On the other hand more massive planets such as super-Earths even in orbits within the habitable zone of their host stars might not lose their initial protoatmospheres completely. These planets could end up as water worlds with CO\(_2\) and hydrogen- or O-rich upper atmospheres. If an atmosphere of a terrestrial planet evolves to an N\(_2\)-dominated atmosphere too early in its lifetime, the atmosphere may escape to space. By comparing the escape related atmospheric evolution between Venus, the Earth, and Mars, one finds that the initial conditions set up by the planetary formation processes and the interaction between the early atmospheres with the young Sun’s or host star’s X-ray and EUV flux as well as the plasma environment (e.g., winds, CMEs, etc.) influence strongly the factors to which a planet may evolve to an Earth-like class I habitat.

Keywords

Solar Wind Terrestrial Planet Escape Rate Habitable Zone Host Star 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Léger, A., Selsis, F., Sotin, C., Guillot, T., Despois, D., Mawet, D., Ollivier, M., Labèque, A., Valette, C., Brachet, F., Chazelas, B., Lammer, H.: A new family of planets? “Ocean-planets”. Icarus 169, 499–504 (2004)ADSGoogle Scholar
  2. 2.
    Selsis, F., Chazelas, B., Bordé, P., Ollivier, M., Brachet, F., Decaudin, M., Bouchy, F., Ehrenreich, D., Grießmeier, J.-M., Lammer, H., Sotin, C., Grasset, O., Moutou, C., Barge, P., Deleuil, M., Mawet, D., Despois, D., Kasting, J.F., Léger, A.: Could we identify hot ocean-planets with CoRoT, Kepler and doppler velocimetry? Icarus 191, 453–468 (2007)ADSGoogle Scholar
  3. 3.
    Tian, F., Kasting, J.F., Solomon, S.C.: Thermal escape of carbon from the early Martian atmosphere. Geophys. Res. Lett. 36(2), CiteID L02205 (2009)Google Scholar
  4. 4.
    Lammer, H., Kasting, J.F., Chassefière, E., Johnson, R.E., Kulikov, Yu.N., Tian, F.: Atmospheric escape and evolution of terrestrial planets and satellites. Space Sci. Rev. 139, 399–436 (2008)Google Scholar
  5. 5.
    Lammer, H., Kulikov, Yu.N., Lichtenegger, H.I.M.: Thermospheric X-ray and EUV heating by the young Sun on early Venus and Mars. Space Sci. Rev. 122, 189–196 (2006)Google Scholar
  6. 6.
    Kulikov, Yu.N., Lammer, H., Lichtenegger, H.I.M., Penz, T., Breuer, D., Spohn, T., Lundin, R., Biernat, H.K.: A comparative study of the influence of the active young Sun on the early atmospheres of Earth, Venus and Mars. Space Sci. Rev. 129, 207–243 (2007)Google Scholar
  7. 7.
    Lundin, R., Lammer, H., Ribas, I.: Planetary magnetic fields and solar forcing: implications for atmospheric evolution. Space Sci. Rev. 129, 245–278 (2007)ADSGoogle Scholar
  8. 8.
    Krauss, S., Fichtinger, B., Lammer, H., Hausleitner, W., Kulikov, Yu.N., Ribas, I., Shematovich, V.I., Bisikalo, D., Lichtenegger, H.I.M., Zaqarashvili, T.V., Khodachenko, M.L., Hanslmeier, A.: Solar flares as proxy for the young Sun: satellite observed thermosphere response to an X17.2 flare of Earth’s upper atmosphere. Ann. Geophys. 30, 1129–1141 (2012) (Accepted)Google Scholar
  9. 9.
    Kulikov, Yu.N., Lammer, H., Lichtenegger, H.I.M., Terada, N., Ribas, I., Kolb, C., Langmayr, D., Lundin, R., Guinan, E.F., Barabash, S., Biernat, H.K.: Atmospheric and water loss from early Venus. Planet. Space Sci. 54, 1425–1444 (2006)Google Scholar
  10. 10.
    Tian, F., Kasting, J.F., Liu, H., Roble, R.G.: Hydrodynamic planetary thermosphere model: 1. The response of the Earth’s thermosphere to extreme solar EUV conditions and the significance of adiabatic cooling. J. Geophys. Res. 113 (2008). doi: 10.1029/2007JE002946
  11. 11.
    Tian, F., Solomon, S.C., Qian, L., Lei, J., Roble, R.G.: Hydrodynamic planetary thermosphere model: 2. Coupling of an electron transport/energy deposition model. J. Reophys. Res. 113, E07005 (2008)Google Scholar
  12. 12.
    Tian, F.: Thermal escape from super Earth atmospheres in the habitable zones of M Stars. ApJ 703, 905–909 (2009)ADSGoogle Scholar
  13. 13.
    Chassefière, E.: Hydrodynamic escape of hydrogen from a hot water-rich atmosphere: the case of Venus. J. Geophys. Res. 101, 26039–26056 (1996)ADSGoogle Scholar
  14. 14.
    Chassefière, E.: Hydrodynamic escape of oxygen from primitive atmospheres: applications to the cases of Venus and Mars. Icarus 124, 537–552 (1996)ADSGoogle Scholar
  15. 15.
    Tian, F., Toon, O.B., Pavlov, A.A., De Sterck, H.: A hydrogen-rich early Earth atmosphere. Science 308, 1014–1017 (2005)ADSGoogle Scholar
  16. 16.
    Lichtenegger, H.I.M., Lammer, H., Grießmeier, J.-M., Kulikov, Yu.N., von Paris, P., Hausleitner, W., Krauss, S., Rauer, H.: Aeronomical evidence for higher \(\text{CO}_{2}\) levels during Earth’s Hadean epoch. Icarus 210, 1–7 (2010)Google Scholar
  17. 17.
    Lammer, H., Bredehöft, J.H., Coustenis, A., Khodachenko, M.L., Kaltenegger, L., Grasset, O., Prieur, D., Raulin, F., Ehrenfreund, P., Yamauchi, M., Wahlund, J.-E., Grießmeier, J.-M., Stangl, G., Cockell, C.S., Kulikov, Yu.N., Grenfell, L., Rauer, H.: What makes a planet habitable? Astron. Astrophs. Rev. 17, 181–249 (2009)Google Scholar
  18. 18.
    Lammer, H., Lichtenegger, H.I.M., Kulikov, Yu.N., Grießmeier, J.-M., Terada, N., Erkaev, N.V., Biernat, H.K., Khodachenko, M.L., Ribas, I., Penz, T., Selsis, F.: Coronal mass ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. II. CME-induced ion pick up of Earth-like exoplanets in close-in habitable zones. Astrobiology 7, 185–207 (2007)Google Scholar
  19. 19.
    Jeans, J.H.: The Dynamical Theory of Gases. Cambridge University Press, Cambridge (1925)zbMATHGoogle Scholar
  20. 20.
    Bauer, S.J., Lammer, H.: Planetary Aeronomy: Atmosphere Environments in Planetary Systems. Springer, Berlin (2004)Google Scholar
  21. 21.
    Chamberlain, J.W.: Planetary coronae and atmospheric evaporation. Planet. Space. Sci. 11, 901–996 (1963)ADSGoogle Scholar
  22. 22.
    Pierrard, V.: Evaporation of hydrogen and helium atoms from the atmospheres of Earth and Mars. Planet. Space Sci. 51, 319–327 (2003)ADSGoogle Scholar
  23. 23.
    Hedelt, P., Ito, Y., Keller, H.U., Reulke, R., Wurz, P., Lammer, H., Rauer, H., Esposito, L.: Titan’s atomic hydrogen corona. Icarus 210, 424–435 (2010)ADSGoogle Scholar
  24. 24.
    Öpik, E.J.: Selective escape of gases. Geophys. J. Roy. Astron. Soc. 7, 490–509 (1963)Google Scholar
  25. 25.
    Penz, T., Erkaev, N.V., Kulikov, Yu.N., Langmayr, D., Lammer, H., Micela, G., Cecchi-Pestellini, C., Biernat, H.K., Selsis, F., Barge, P., Deleuil, M., Léger, A.: Mass loss from “Hot Jupiters”- Implications for CoRoT discoveries, Part II: long time thermal atmospheric evaporation modeling. Planet. Space Sci. 56, 1260–1272 (2008)Google Scholar
  26. 26.
    Vidal-Madjar, A., Lecavelier des Etangs, A., Désert, J.M., Ballester, G.E., Ferlet, R., Hébrard, G., Mayor, M.: An extended upper atmosphere around the extrasolar planet HD209458 b. Nature 422, 143–146 (2003)Google Scholar
  27. 27.
    Lammer, H., Lichtenegger, H.I.M., Kolb, C., Ribas, I., Guinan, E.F., Bauer, S.J.: Loss of water from Mars: implications for the oxidation of the soil. Icarus 165, 9–25 (2003)ADSGoogle Scholar
  28. 28.
    Erkaev, N.V., Penz, T., Lammer, H., Lichtenegger, H.I.M., Wurz, P., Biernat, H.K., Griessmeier, J.-M., Weiss, W.W.: Plasma and magnetic field parameters in the vicinity of short periodic giant exoplanets. ApJS 157, 396–401 (2005)ADSGoogle Scholar
  29. 29.
    Bauer, S.J.: Physics of Planetary Ionospheres. Springer, Berlin (1973)Google Scholar
  30. 30.
    Brace, L.H., Theis, R.F., Hoegy, W.R.: Plasma clouds above the ionopause of Venus and their implications. Planet. Space Sci. 30, 29–37 (1982)ADSGoogle Scholar
  31. 31.
    Elphic, R.C., Ershkovich, A.I.: On the stability of the ionopause of Venus. J. Geophys. Res. 89, 997–1002 (1984)ADSGoogle Scholar
  32. 32.
    Wolff, R.S., Goldstein, B.E., Yeates, C.M.: The onset and development of Kelvin-Helmholtz instability at the Venus ionopause. J. Geophys. Res. 85, 7697–7707 (1980)ADSGoogle Scholar
  33. 33.
    Penz, T., Erkaev, N.V., Biernat, H.K., Lammer, H., Amerstorfer, U.V., Gunell, H., Kallio, E., Barabash, S., Orsini, S., Milillo, A., Baumjohann, W.: Ion loss on Mars caused by the Kelvin-Helmholtz instability. Planet. Space Sci. 52, 1157–1167 (2004)ADSGoogle Scholar
  34. 34.
    Arshukova, I.L., Erkaev, N.V., Biernat, H.K., Vogl, D.F.: Interchange instability of the Venusian ionopause. Adv. Space Res. 33, 182–186 (2004)ADSGoogle Scholar
  35. 35.
    Lammer, H., Lichtenegger, H.I.M., Biernat, H.K., Erkaev, N.V., Arshukova, I.L., Kolb, C., Gunell, H., Lukyanov, A., Holmström, M., Barabash, S., Zhang, T.L., Baumjohann, W.: Loss of hydrogen and oxygen from the upper atmosphere of Venus. Planet. Space Sci. 54, 1445–1456 (2006)ADSGoogle Scholar
  36. 36.
    Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Oxford University Press, New York (1961)zbMATHGoogle Scholar
  37. 37.
    Pope, S.A., Balikhin, M.A., Zhang, T.L., Fedorov, A.O., Gedalin, M., Barabash, S.: Giant vortices lead to ion escape from Venus and re-distribution of plasma in the ionosphere. Geophys. Res. Lett. 36, L07202 (2009)ADSGoogle Scholar
  38. 38.
    Thomas, V.A., Winske, D.: Kinetic simulation of the Kelvin-Helmholtz instability at the Venus ionopause. Geophys. Res. Lett. 18, 1943–1946 (1991)ADSGoogle Scholar
  39. 39.
    Terada, N., Machida, S., Shinagawa, H.: Global hybrid simulation of the Kelvin-Helmholtz instability at the Venus ionopause. J. Geophys. Res. 107, 1471–1490 (2002)Google Scholar
  40. 40.
    Amerstorfer, U.V., Erkaev, N.V., Langmayr, D., Biernat, H.K.: On Kelvin-Helmholtz instability due to the solar wind interaction with unmagnetized planets. Planet. Space Sci. 55, 1811–1816 (2007)ADSGoogle Scholar
  41. 41.
    Amerstorfer, U.V., Erkaev, N.V., Taubenschuss, U., Biernat, H.K.: Influence of a density increase on the evolution of the Kelvin-Helmholtz instability and vortices. Phys. Plasmas 17, 072901 (2010)ADSGoogle Scholar
  42. 42.
    Möstl, U.V., Erkaev, N.V., Zellinger, M., Lammer, H., Gröller, H., Biernat, H.K., Korovinskiy, D.: The Kelvin-Helmholtz instability at Venus: what is the unstable boundary? Icarus 216, 476–484 (2011)ADSGoogle Scholar
  43. 43.
    Pérez-de Tejada, H.: Plasma flow in the Mars magnetosphere. J. Geophys. Res. 92, 4713–4718 (1987)Google Scholar
  44. 44.
    Pérez-de Tejada, H.: Momentum transport in the solar wind erosion of the Mars ionosphere. J. Geophys. Res. 103, 31499–31508 (1998)Google Scholar
  45. 45.
    Lundin, R., Dubinin, E.M.: Phobos-2 results on the ionospheric plasma escape from Mars. Adv. Space Res. 12, 255–263 (1992)ADSGoogle Scholar
  46. 46.
    Hartle, R.E., Grebowsky, J.M.: Upward ion flow in ionospheric holes on Venus. J. Geophys. Res. 95, 31–37 (1990)ADSGoogle Scholar
  47. 47.
    Hartle, R.E., Grebowsky, J.M.: Light ion flow in the nightside ionosphere of Venus. J. Geophys. Res. 98, 7437–7445 (1993)ADSGoogle Scholar
  48. 48.
    Hartle, R.E., Donahue, T.M., Grebowsky, J.M., Mayr, H.G.: Hydrogen and deuterium in the thermosphere of Venus: solar cycle variations and escape. J. Geophys. Res. 101, 4525–4538 (1996)ADSGoogle Scholar
  49. 49.
    Lammer, H., Bauer, S.J.: A Mars magnetic field: constraints from molecular ion escape. J. Geophys. Res. 97, 20925–20928 (1992)ADSGoogle Scholar
  50. 50.
    Mc Elroy, M.B.: An evolving atmosphere. Science 175, 443–445 (1972)Google Scholar
  51. 51.
    Nagy, A.F., Cravens, T.E., Yee, J.H., Stewart, A.I.F.: Hot oxygen atoms in the upper atmosphere of Venus. Geophys. Res. Lett. 8, 629–632 (1981)ADSGoogle Scholar
  52. 52.
    Ip, W.-H.: On a hot oxygen corona of Mars. Icarus 76, 135–145 (1988)ADSGoogle Scholar
  53. 53.
    Lammer, H., Bauer, S.J.: Non-thermal atmospheric escape from Mars and Titan. J. Geophys. Res. 96, 1819–1825 (1991)ADSGoogle Scholar
  54. 54.
    Fox, J.L., Hać, A.B.: Spectrum of hot O at the exobases of the terrestrial planets. J. Geophys. Res. 102, 24005–24011 (1997)ADSGoogle Scholar
  55. 55.
    Luhmann, J.: What do we really know about solar wind coupling? Adv. Space Res. 20, 907–911 (1997)ADSGoogle Scholar
  56. 56.
    Kim, J., Nagy, A.F., Fox, J.L., Cravens, T.E.: Solar cycle variability of hot oxygen atoms at Mars. J. Geophys. Res. 103, 29339–29342 (1998)ADSGoogle Scholar
  57. 57.
    Hodges Jr, R.R.: Distributions of hot oxygen for Venus and Mars. J. Geophys. Res. 105, 6971–6981 (2000)ADSGoogle Scholar
  58. 58.
    Lammer, H., Stumptner, W., Bauer, S.J.: Upper limits for the Martian exospheric number density during the planet B/Nozomi mission. Planet. Space Sci. 48, 1473–1478 (2000)ADSGoogle Scholar
  59. 59.
    Krestyanikova, M.A., Shematovich, V.I.: Stochastic models of hot planetary and satellite coronas: a photochemical source of hot oxygen in the upper atmosphere of Mars. Sol. Syst. Res. 39, 2232 (2005)Google Scholar
  60. 60.
    Krestyanikova, M.A., Shematovich, V.I.: Stochastic models of hot planetary and satellite coronas: a hot oxygen corona of Mars. Sol. Syst. Res. 40, 384–392 (2006)ADSGoogle Scholar
  61. 61.
    Fox, J.L., Hać, A.B.: Photochemical escape of oxygen from Mars: a comparison of the exobase approximation to a Monte Carlo method. Icarus 204, 527–544 (2009)ADSGoogle Scholar
  62. 62.
    Chaufray, J.Y., Modolo, R., Leblanc, F., Chanteur, G., Johnson, R.E., Luhmann, J.G.: Mars solar wind interaction: formation of the Martian corona and atmospheric loss to space. J. Geophys. Res. 112(E9), CiteID E09009 (2007)Google Scholar
  63. 63.
    Valeille, A., Combi, M.R., Tenishev, V., Bougher, S.W., Nagy, A.F.: A study of suprathermal oxygen atoms in Mars upper thermosphere and exosphere over the range of limiting conditions. Icarus 206, 18–27 (2010)ADSGoogle Scholar
  64. 64.
    Lichtenegger, H.I.M., Gröller, H., Lammer, H., Kulikov, Yu.N., Shematovich, V.I.: On the elusive hot oxygen corona of Venus. Geophys. Res. Lett. 36, L10204 (2009)Google Scholar
  65. 65.
    Gröller, H., Shematovich, V.I., Lichtenegger, H.I.M., Lammer, H., Pfleger, M., Kulikov, Yu.N., Macher, W., Amerstorfer, U.V., Biernat, H.K.: Venus’ atomic hot oxygen environment. J. Geophys. Res. 115, E12017 (2010)Google Scholar
  66. 66.
    Gröller, H., Lammer, H., Lichtenegger, H.I.M., Pfleger, M., Dutuit, O., Shematovich, V.I., Kulikov, Yu.N., Biernat, H.K.: Hot oxygen atoms in the Venus nightside exosphere. Geophys. Res. Lett. 39, L03202 (2012)Google Scholar
  67. 67.
    Gurwell, M.A., Yung, Y.L.: Fractionation of hydrogen and deuterium on Venus due to collisional ejection. Planet. Space Sci. 41, 91–101 (1993)ADSGoogle Scholar
  68. 68.
    Balakrishnan, N., Kharchenko, V., Dalgarno, A.: Slowing of energetic \(\text{O(}^{3}\)P) atoms in collisions with \(\text{N}_{2}\). J. Geophys. Res. 103, 23392–23398 (1998)ADSGoogle Scholar
  69. 69.
    Balakrishnan, N., Kharchenko, V., Dalgarno, A.: Quantum mechanical and semiclassical studies of \(\text{ N}^{+}\)-\(\text{N}_{2}\) collisions and their application to thermalization of fast N atoms. J. Chem. Phys. 108, 943–949 (1998)ADSGoogle Scholar
  70. 70.
    Kharchenko, V., Dalgarno, A., Zygelman, B., Yee, J.H.: Energy transfer in collisions of oxygen atoms in the terrestrial atmosphere. J. Geophys. Res. 103, 24899–24906 (2000)ADSGoogle Scholar
  71. 71.
    Jakosky, B.M., Pepin, R.O., Johnson, R.E., Fox, J.L.: Mars atmospheric loss and isotopic fractionation by solar-wind-induced sputtering and photochemical escape. Icarus 111, 271–288 (1994)ADSGoogle Scholar
  72. 72.
    Leblanc, F., Johnson, R.E.: Role of molecular species in pick up ion sputtering of the Martian atmosphere. J. Geophys. Res. 107, 1–6 (2002)Google Scholar
  73. 73.
    Johnson, R.E.: Energetic Charged Particle Interactions with Atmospheres and Surfaces. Springer, Berlin (1990)Google Scholar
  74. 74.
    Lammer, H., Bauer, S.J.: Atmospheric mass loss from Titan by sputtering. Planet. Space Sci. 41, 657–663 (1993)ADSGoogle Scholar
  75. 75.
    Luhmann, J.G., Kozyra, J.U.: Dayside pickup oxygen ion precipitation at Venus and Mars: spatial distributions, energy deposition and consequences. J. Geophys. Res. 96, 5457–5467 (1991)ADSGoogle Scholar
  76. 76.
    Terada, N., Kulikov, Yu.N., Lammer, H., Lichtenegger, H.I.M., Tanaka, T., Shinagawa, H., Zhang, T.-L.: Atmosphere and water loss form early Mars under extreme solar wind and extreme ultraviolet conditions. Astrobiology 9, 55–70 (2009)Google Scholar
  77. 77.
    Scalo, J., Kaltenegger, L., Segura, A.G., Fridlund, M., Ribas, I.: Kulikov, Yu.N., Grenfell, J.L., Rauer, H., Odert, P., Leitzinger, M., Selsis, F., Khodachenko, M.L., Eiroa, C., Kasting, J., Lammer, H.: M stars as targets for terrestrial exoplanet searches and biosignature detection. Astrobiology 7, 85–166 (2007)Google Scholar
  78. 78.
    Yelle, R.V.: Aeronomy of extra-solar giant planets at small orbital distances. Icarus 170, 167–179 (2004)ADSGoogle Scholar
  79. 79.
    Koskinen, T.T., Yelle, R.V., Lavvas, P., Lewis, N.K.: Characterizing the thermosphere of HD209458 b with UV tranist observations. ApJ 723, 116–128 (2010)ADSGoogle Scholar
  80. 80.
    Zahnle, K.J., Kasting, J.F., Pollack, J.B.: Evolution of a steam atmosphere during Earth’s accreation. Icarus 74, 62–97 (1988)ADSGoogle Scholar
  81. 81.
    Sekiya, M., Nakazawa, K., Hayashi, C.: Dissipation of the primordial terrestrial atmosphere due to irradiation of the solar EUV. Prog. Theor. Phys. 64, 1968–1985 (1980)ADSGoogle Scholar
  82. 82.
    Sekiya, M., Nakazawa, K., Hayashi, C.: Dissipation of the rare gases contained in the primordial Earth’s atmosphere. Earth Planet. Sci. Lett. 50, 197–201 (1980)ADSGoogle Scholar
  83. 83.
    Sekiya, M., Hayashi, C., Nakazawa, K.: Dissipation of the primordial terrestrial atmosphere due to irradiation of the solar far-UV during T-Tauri stage. Prog. Theor. Phys. 66, 1301–1316 (1981)ADSGoogle Scholar
  84. 84.
    Lammer, H., Kislyakova, K.G., Odert, P., Leitzinger, M., Schwarz, R., Pilat-Lohinger, E., Kulikov, Yu.N., Khodachenko, M.L., Güdel, M., Hanslmeier, A.: Pathways to Earth-like atmospheres: extreme ultraviolet (EUV)-powered escape of hydrogen-rich protoatmospheres. Orig. Life Evol. Biosph. 41, 503–522 (2012)Google Scholar
  85. 85.
    Zahnle, K.J., Walker, J.C.G.: The evolution of solar ultraviolet luminosity. Rev. Geophys. 20, 280–292 (1982)ADSGoogle Scholar
  86. 86.
    Güdel, M., Guinan, E.F., Skinner, S.L.: The X-ray Sun in Time: a study of the long-term evolution of coronae of solar-type stars. ApJ 483, 947–960 (1997)ADSGoogle Scholar
  87. 87.
    Ribas, I., Guinan, E.F., Güdel, M., Audard, M.: Evolution of the solar activity over time and effects on planetary atmospheres. I. High-energy irradiances (1–1700 Å). ApJ 622, 680–694 (2005)Google Scholar
  88. 88.
    Güdel, M.: The Sun in time: activity and environment. Liv. Rev. Solar Phys. 4(3), 1–137 (2007)ADSGoogle Scholar
  89. 89.
    Hartmann, L., Kenyon, S.J.: High spectral resolution infrared observations of V1057 Cygni. ApJ 322, 393–398 (1987)ADSGoogle Scholar
  90. 90.
    Hartmann, L., Kenyon, S.J.: The FU Orionis phenomenon. Ann. Rev. Astron. Astrophys. 34, 207–240 (1996)ADSGoogle Scholar
  91. 91.
    Lammer, H., Stumptner, W., Molina-Cuberos, G.J., Bauer, S.J., Owen, T.: Nitrogen isotope fractionation and its consequence for Titan’s atmospheric evolution. Planet. Space Sci. 48, 529–543 (2000)ADSGoogle Scholar
  92. 92.
    Feigelson, E.D., Montmerle, T.: High-energy processes in young stellar objects. Ann. Rev. Astron. Astrophys. 37, 363–408 (1999)ADSGoogle Scholar
  93. 93.
    Checchi-Pestellini, C., Ciaravella, A., Micela, G.: Stellar X-ray heating of planetary atmospheres. A&AL 458, L13–L16 (2006)Google Scholar
  94. 94.
    Owen, J., Jackson, A.: Planetary evaporation by UV and X-ray radiation: basic hydrodynamics. Mon. Not. R. Astron. Soc. (2012) (accepted)Google Scholar
  95. 95.
    Lammer, H., Odert, P., Leitzinger, M., Khodachenko, M.L., Panchenko, M., Kulikov, Yu.N., Zhang, T.L., Lichtenegger, H.I.M., Erkaev, N.V., Wuchterl, G., Micela, G., Penz, A., Biernat, H.K., Weingrill, J., Steller, M., Ottacher, H., Hasiba, J., Hanslmeier, A.: Determining the mass loss limit for close-in exoplanets: what can we learn from transit observations? A&A 506, 399–410 (2009)Google Scholar
  96. 96.
    Waite Jr, J.H., Cravens, T.E., Kozyra, J., Nagy, A.F., Atreya, S.K., Chen, R.H.: Electron precipitation and related aeronomy of the Jovian thermosphere and ionosphere. J. Geophys. Res. 88, 6143–6163 (1983)ADSGoogle Scholar
  97. 97.
    Murray-Clay, R.A., Chiang, E.I., Murray, N.: Atmospheric escape from hot Jupiters. ApJ 693, 23–42 (2009)ADSGoogle Scholar
  98. 98.
    Leitzinger, M., Odert, P., Kulikov, Yu.N., Lammer, H., Wuchterl, G., Penz, T., Guarcello, M.G., Micela, G., Khodachenko, M.L., Weingrill, J., Hanslmeier, A., Biernat, H.K., Schneider, J.: Could CoRoT-7b and Kepler-10b be remnants of evaporated gas or ice giants? Planet. Space Sci. 59, 1472–1481 (2011)Google Scholar
  99. 99.
    Hunten, D.M.: Atmospheric evolution of the terrestrial planets. Science 259, 915–920 (1993)ADSGoogle Scholar
  100. 100.
    Elkins-Tanton, L.T.: Linked magma ocean solidification and atmospheric growth for Earth and Mars. Earth Planet. Sci. Lett. 271, 181–191 (2008)ADSGoogle Scholar
  101. 101.
    Liu, L.-G.: The inception of the oceans and \(\text{CO}_{2}\)-atmosphere in the early history of the Earth. Earth Planet. Sci. Lett. 227, 179–184 (2004)ADSGoogle Scholar
  102. 102.
    Allègre, C.J., Hofmann, A.W., O‘Nions, R.K.: The argon constraints on mantle structure. Geophys. Res. Lett. 23, 3555–3557 (1996)ADSGoogle Scholar
  103. 103.
    Touboul, M., Kleine, T., Bourdon, B., Palme, H., Wieler, R.: Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals. Nature 450, 1206–1209 (2007)ADSGoogle Scholar
  104. 104.
    Mizuno, H.: Formation of the giant planets. Prog. Theor. Phys. 64, 544–557 (1980)ADSGoogle Scholar
  105. 105.
    Hayashi, C., Nakazawa, K., Mizuno, H.: Earth’s melting due to the blanketing effect of the primordial dense atmosphere. Earth Planet. Sci. Lett. 43, 22–28 (1979)ADSGoogle Scholar
  106. 106.
    Matsui, T., Abe, Y.: Impact-induced atmospheres and oceans on Earth and Venus. Nature 322, 526–528 (1986)ADSGoogle Scholar
  107. 107.
    Albarède, F., Blichert-Toft, J.: The split fate of the early Earth, Mars, Venus and Moon. CR Geosci. 339, 917–927 (2007)Google Scholar
  108. 108.
    Abe, Y.: Thermal and chemical evolution of the terrestrial magma ocean. Phys. Earth Planet. Int. 100, 27–39 (1997)ADSGoogle Scholar
  109. 109.
    Zahnle, K.J., Kasting, J.F.: Mass fractionation during transonic escape and implications for loss of water from Mars and Venus. Icarus 68, 462–480 (1986)ADSGoogle Scholar
  110. 110.
    Hunten, D.M., Pepin, R.O., Walker, J.C.G.: Mass fractionation in hydrodynamic escape. Icarus 69, 532–549 (1987)Google Scholar
  111. 111.
    Lammer, H., Chassefière, E., Karatekin, Ö, Morschhauser, A., Niles, P.B., Mousis, O., Grott, M., Gröller, H., Hauber, E., Pham, L.B.S.: Outgassing history and escape of the martian atmosphere and water inventory. Space Sci. Rev. (2012) (accepted)Google Scholar
  112. 112.
    Wood, B.E., Müller, H.-R., Zank, G., Linsky, J.L.: Measured mass loss rates of solar-like stars as a function of age and activity. ApJ 574, 412–425 (2002)ADSGoogle Scholar
  113. 113.
    Gender, H., Aber, Y.: Survival of a proto-atmosphere through the stage of giant impacts: the mechanical aspects. Icarus 164, 149–162 (2003)ADSGoogle Scholar
  114. 114.
    Elkins-Tanton, L.T.: Formation of water ocean on rocky planets. Astrophys. Space Sci. 332, 359–364 (2011)ADSGoogle Scholar
  115. 115.
    Kasting, J.F., Pollack, J.B., Crisp, D.: Effects of high \(\text{CO}_{2}\) levels on surface temperature and atmospheric oxidation state of the early Earth. J. Atmos. Chem. 1, 403–428 (1984)Google Scholar
  116. 116.
    Kempe, S., Degens, E.T.: An early Soda ocean? Chem. Geol. 53, 95–108 (1985)Google Scholar
  117. 117.
    Lunine, J.I., Chambers, J., Morbidelli, A., Leshin, L.A.: The origin of water on Mars. Icarus 165, 1–8 (2003)ADSGoogle Scholar
  118. 118.
    Horner, J., Mousis, O., Petit, J.-M., Jones, B.-W.: Differences between the impact regimes of the terrestrial planets: implications for primordial D:H ratios. Planet. Space Sci. 57, 1338–1345 (2009)ADSGoogle Scholar
  119. 119.
    Chassefière, E., Leblanc, F.: Constraining methane release due to serpentinzation by the observed D/H ratio on Mars. Earth Planet. Sci. Lett. 310, 262–271 (2011)ADSGoogle Scholar
  120. 120.
    Lammer, H., Kolb, C., Penz, T., Amerstorfer, U.V., Biernat, H.K., Bodiselitsch, B.: Estimation of the past and present Martian water-ice reservoirs by isotopic constraints on exchange between the atmosphere and the surface. Int. J. Astrobiol. 2, 195–202 (2003b)Google Scholar
  121. 121.
    Barabash, S., Fedorov, A., Lundin, R., Sauvaud, J.-A.: Martian atmospheric erosion rates. Science 315, 501–503 (2007)ADSGoogle Scholar
  122. 122.
    Ma, Y.-J., Nagy, A.F.: Ion escape fluxes from Mars. Geophys. Res. Lett. 34, L08201 (2007)ADSGoogle Scholar
  123. 123.
    Modolo, R., Chanteur, G.M., Dubinin, E., Matthews, A.P.: Influence of the solar EUV flux on the Martian plasma environment. Ann. Geophys. 23, 1–12 (2005)Google Scholar
  124. 124.
    Chassefière, E., Leblanc, F., Langlais, B.: The combined effects of escape and magnetic field histories at Mars. Planet. Space Sci. 55, 343–357 (2007)ADSGoogle Scholar
  125. 125.
    Manning, C.V., Ma, Y., Brain, D.A., McKay, C.P., Zahnle, K.J.: Parametric analysis of modeled ion escape from Mars. Icarus 212, 131–137 (2010)ADSGoogle Scholar
  126. 126.
    Chappell, C.R., Moore, T.E., Waite Jr, J.H.: The ionosphere as a fully adequate source of plasma for the earth’s magnetosphere. J. Geophys. Res. 92, 5896–5910 (1987)ADSGoogle Scholar
  127. 127.
    Moore, T.E., Lundin, R., Alcayde, D., Andre, M., Ganguli, S.B., Temerin, M., Yau, A.: Source processes in the high-latitude ionosphere. Space Sci. Rev. 88, 7–84 (1999)ADSGoogle Scholar
  128. 128.
    Seki, K., Elphic, R.C., Hirahara, M., Terasawa, T., Mukai, T.: On atmospheric loss of oxygen ions from Earth through magnetospheric processes. Science 291, 1939–1941 (2001)ADSGoogle Scholar
  129. 129.
    Yau, A.W., André, M.: Sources of ion outflow in the high latitude ionosphere. Space Sci. Rev. 37, 1–25 (1997)ADSGoogle Scholar
  130. 130.
    Wei, Y., Fraenz, M., Dubinin, E., Woch, J., Lühr, H., Wan, W., Zong, Q.-G., Zhang, T.-L., Pu, Z.Y., Fu, S.Y., Barabash, S., Lundin, R., Dandouras, I.: Enhanced atmospheric oxygen outflow on Earth and Mars driven by a corotating interaction region. J. Geophys. Res. 117, A03208 (2012)ADSGoogle Scholar
  131. 131.
    Roble, R.G., Rodley, E.C., Dickinson, R.E.: On the global mean structure of the thermosphere. J. Geophys. Res. 92, 8745–8758 (1987)ADSGoogle Scholar
  132. 132.
    Smithtro, C.G., Sojka, J.J.: A new global average model of the coupled thermosphere and ionosphere. J. Geophys. Res. 110, A08305 (2005a)ADSGoogle Scholar
  133. 133.
    Smithtro, C.G., Sojka, J.J.: Behavior of the ionosphere and thermosphere subject to extreme solar cycle conditions. J. Geophys. Res. 110, A08306 (2005b)ADSGoogle Scholar
  134. 134.
    Trigo-Rodriguez, J.M., Javier Martín-Torres, F.: Clues on the importance of comets in the origin and evolution of the atmospheres of Titan and Earth. Planet. Space Sci. 60, 3–9 (2012)Google Scholar
  135. 135.
    Lammer, H., Kislyakova, K.G., Güdel, M., Holmström, M., Erkaev, N.V., Odert, P., Khodachenko, M.L.: Stability of Earth-like \(\text{N}_{2}\) atmospheres: implications for habitability. In: Muller, C., Nixon, C.A., Raulin, F., Trigo-Rodriguez, J.M. (eds.) Nitrogen. Springer, Heidelberg (2012) (in press)Google Scholar
  136. 136.
    Lammer, H., Güdel, M., Kulikov, Yu.N., Ribas, I., Zaqarashvili, T.V., Khodachenko, M.L., Kislyakova, K.G., Gröller, H., Odert, P., Leitzinger, M., Fichtinger, B., Krauss, S., Hausleitner, W., Holmström, M., Sanz-Forcada, J., Lichtenegger, H.I.M., Hanslmeier, A., Shematovich, V.I., Bisikalo, D., Rauer, H., Fridlund, M.: Variability of solar/stellar activity and magnetic field and its influence on planetary atmosphere evolution. Earth Planets Space 63, 179–199 (2012)Google Scholar
  137. 137.
    Rivera, E.J., Lissauer, J.J., Butler, R.P., Marcy, G.W., Vogt, S.S., Fischer, D.A., Brown, T.M., Laughlin, G.H., Gregory, W.: A \({\sim } \text{7.5} \text{M}_{ \text{Earth}}\) planet orbiting the nearby star, GJ 876. ApJ 634, 625–640 (2005)Google Scholar
  138. 138.
    Gould, A., Udalski, A., An, D., Bennett, D.P., Zhou, A.-Y., Dong, S., Rattenbury, N.J., Gaudi, B.S., Yock, P.C.M., Bond, I.A., Christie, G.W., Horne, K., Anderson, J., Stanek, K.Z., DePoy, D.L., Han, C., McCormick, J., Park, B.-G., Pogge, R.W., Poindexter, S.D., Soszyński, I., Szymański, M.K., Kubiak, M., Pietrzyński, G., Szewczyk, O., Wyrzykowski, L., Ulaczyk, K., Paczyński, B., Bramich, D.M., Snodgrass, C., Steele, I.A., Burgdorf, M.J., Bode, M.F., Botzler, C.S., Mao, S., Swaving, S.C.: Microlens OGLE-2005-BLG-169 implies that cool Neptune-like planets are common. ApJ 644, L37–L40 (2006)ADSGoogle Scholar
  139. 139.
    Lovis, C., Mayor, M., Pepe, F., Alibert, Y., Benz, W., Bouchy, F., Correia, A.C.M., Laskar, J., Mordasini, C., Queloz, D., Santos, N.C., Udry, S., Bertaux, J.-L., Sivan, J.-P.: An extrasolar planetary system with three Neptune-mass planets. Nature 441, 305–309 (2006)ADSGoogle Scholar
  140. 140.
    Beust, H., Bonfils, X., Delfosse, X., Udry, S.: Dynamical evolution of the Gliese 581 planetary system. A&A 479, 277–282 (2008)Google Scholar
  141. 141.
    Léger, A., Rouan, D., Schneider, J., Barge, P., Fridlund, F., CoRoT Team: Transiting exoplanets from the CoRoT space mission VIII. CoRoT-7b: The first super-Earth with measured radius. A&A 506, 287–302 (2009)Google Scholar
  142. 142.
    Charbonneau, D., Berta, Z.K., Irwin, J., Burke, C.J., Nutzman, P., Buchhave, L.A., Lovis, C., Bonfils, X., Latham, D.W., Udry, S., Murray-Clay, R.A., Holman, M.J., Falco, E.E., Winn, J.N., Queloz, D., Pepe, F., Mayor, M., Delfose, X., Forveille, T.: A super-Earth transiting a nearby low-mass star. Nature 462, 891–894 (2009)ADSGoogle Scholar
  143. 143.
    Batalha, N.M., Borucki, W.J., Bryson, S.T., Buchhave, L.A., Caldwell, D.A., Kepler Team: Kepler’s first rocky planet: Kepler-10b. ApJ 729, article id. 27 (2011)Google Scholar
  144. 144.
    Lissauer, J.J., Kepler Team: A closely packed system of low-mass, low-density planets transiting Kepler-11. Nature 470, 53–58 (2011)Google Scholar
  145. 145.
    Demory, B.-O., Gillon, M., Deming, D., Valencia, D., Seager, S., Benneke, B., Lovis, C., Cubillos, P., Harrington, J., Stevenson, K.B., Mayor, M., Pepe, F., Queloz, D., Ségransan, D., Udry, S.: Detection of a transit of the super-Earth 55 Cnc e with warm Spitzer. A&A, 553, id.A114 (2011) (Submitted)Google Scholar
  146. 146.
    Bonfils, X., Delfosse, X., Udry, S., Forveille, T., Mayor, M., Perrier, C., Bouchy, F., Gillon, M., Lovis, C., Pepe, F., Queloz, D., Santos, N.C., Ségransan, D., Bertaux, J.-L.: The HARPS search for southern extra-solar planets XXXI. The M-dwarf sample. A&A, 2011arXiv1111.5019B (2011) (Submitted)Google Scholar
  147. 147.
    Borucki, B., Koch, D.G., Basri, G., Batalha, N., Brown, T.M., Kepler Team: Characteristic of Kepler planetary candidates based on the first data set. ApJ 728, 117 (20pp) (2011)Google Scholar
  148. 148.
    Elkins-Tanton, L., Seager, S.: Ranges of atmospheric mass and composition of super-Earth exoplanets. ApJ 685, 1237–1246 (2008)ADSGoogle Scholar
  149. 149.
    Kasting, J.F.: \(\text{O}_{2}\) concentrations in dense primitive atmospheres: commentary. Planet. Space Sci. 43, 11–13 (1995)ADSGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  1. 1.Space Research InstituteAustrian Academy of SciencesGrazAustria

Personalised recommendations