Evolution of the Solar/Stellar Radiation and Plasma Environment

Chapter
Part of the SpringerBriefs in Astronomy book series (BRIEFSASTRON)

Abstract

The evolution of planetary atmospheres can only be understood if one considers that the radiation and particle environment of the Sun or a planet’s host star changed during their life time. The magnetic activity of solar-type stars declines steadily during their evolution on the Zero-Age-Main-Sequence.

Keywords

Coronal Mass Ejection Stellar Wind Young Star Planetary Atmosphere Solar Wind Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Lundin, R., Lammer, H., Ribas, I.: Planetary magnetic fields and solar forcing: implications for atmospheric evolution. Space Sci. Rev. 129, 245–278 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    Sagan, C., Mullen, G.: Earth and Mars: evolution of atmospheres and surface temperatures. Science 177, 52–56 (1972)ADSCrossRefGoogle Scholar
  3. 3.
    Krauss, S., Fichtinger, B., Lammer, H., Hausleitner, W., Kulikov, Yu. N., Ribas, I., Shematovich, V.I., Bisikalo, D., Lichtenegger, H.I.M., Zaqarashvili, T.V., Khodachenko, M.L., Hanslmeier, A.: Solar flares as proxy for the young Sun: satellite observed thermosphere response to an X17.2 flare of Earth’s upper atmosphere. Ann. Geophys. 30, 1129–1141 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    Lammer, H., Güdel, M.: Kulikov, YuN, Ribas, I., Zaqarashvili, T.V., Khodachenko, M.L., Kislyakova, K.G., Gröller, H., Odert, P., Leitzinger, M., Fichtinger, B., Krauss, S., Hausleitner, W., Holmström, M., Sanz-Forcada, J., Lichtenegger, H.I.M., Hanslmeier, A., Shematovich, V.I., Bisikalo, D., Rauer, H., Fridlund, M.: Variability of solar/stellar activity and magnetic field and its influence on planetary atmosphere evolution. Earth Planets Space 63, 179–199 (2012)Google Scholar
  5. 5.
    Gross, S.H.: On the exospheric temperature of hydrogen-dominated planetary atmospheres. J. Atmos. Sci. 29, 214–218 (1972)ADSCrossRefGoogle Scholar
  6. 6.
    Bauer, S.J.: Physics of Planetary Ionospheres. Springer, Berlin (1973)CrossRefGoogle Scholar
  7. 7.
    Bauer, S.J.: Solar cycle variation of planetary exospheric temperatures. Nature 232, 101–102 (1971)ADSGoogle Scholar
  8. 8.
    Lammer, H., Selsis, F., Ribas, I., Guinan, E.F., Bauer, S.J., Weiss, W.W.: Atmospheric loss of exoplanets resulting from stellar X-Ray and extreme-ultraviolet heating. ApJ 598, L121–L124 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    Bauer, S.J., Lammer, H.: Planetary Aronomy: Atmosphere Environments in Planetary Systems. Springer, Berlin (2004)Google Scholar
  10. 10.
    Guzik, J.A., Watson, L.S., Cox, A.N.: Implications of revised solar abundances for helioseismology. Memorie della Societa Astronomica Italiana 77, 389–392 (2006)ADSGoogle Scholar
  11. 11.
    Bressan, A., Fagotto, F., Bertelli, G., Chiosi, C.: Evolutionary sequences of stellar models with new radiative opacities. II - Z=0.02. Astron. Astrophys. Suppl. Ser. 100, 647–664 (1993)ADSGoogle Scholar
  12. 12.
    Kasting, J.F.: Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. Icarus 74, 472–494 (1988)ADSCrossRefGoogle Scholar
  13. 13.
    Ribas, I., Guinan, E.F., Güdel, M., Audard, M.: Evolution of the solar activity over time and effects on planetary atmospheres. I. High-energy irradiances (1–1700Å). ApJ 622, 680–694 (2005)Google Scholar
  14. 14.
    Güdel, M.: The sun in time: activity and environment. Living Rev. Sol. Phys. 4(3), 1–137 (2007)ADSGoogle Scholar
  15. 15.
    Güdel, M., Guinan, E.F., Skinner, S.L.: The X-ray sun in time: a study of the long-term evolution of coronae of solar-type stars. ApJ 483, 947–960 (1997)ADSCrossRefGoogle Scholar
  16. 16.
    Scalo, J., Kaltenegger, L., Segura, A.G., Fridlund, M., Ribas, I.: Kulikov, Yu.N., Grenfell, J.L., Rauer, H., Odert, P., Leitzinger, M., Selsis, F., Khodachenko, M.L., Eiroa, C., Kasting, J., Lammer, H.: M stars as targets for terrestrial exoplanet searches and biosignature detection. Astrobiology 7, 85–166 (2007)Google Scholar
  17. 17.
    Penz, T., Micela, G., Lammer, H.: Influence of the evolving stellar X-ray luminosity distribution on exoplanetary mass loss. Astron. Astrophys. 477, 309–314 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    Penz, T., Micela, G.: X-ray induced mass loss effects on exoplanets orbiting dM stars. Astron. Astrophys. 479, 579–584 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    Lammer, H., Odert, P., Leitzinger, M., Khodachenko, M.L., Panchenko, M., Kulikov, YuN, Zhang, T.L., Lichtenegger, H.I.M., Erkaev, N.V., Wuchterl, G., Micela, G., Penz, A., Biernat, H.K., Weingrill, J., Steller, M., Ottacher, H., Hasiba, J., Hanslmeier, A.: Determining the mass loss limit for close-in exoplanets: what can we learn from transit observations? A&A 506, 399–410 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    Lammer, H., Bredehöft, J.H., Coustenis, A., Khodachenko, M.L., Kaltenegger, L., Grasset, O., Prieur, D., Raulin, F., Ehrenfreund, P., Yamauchi, M., Wahlund, J.-E., Grießmeier, J.-M., Stangl, G., Cockell, C.S., Kulikov, Yu.N., Grenfell, L., Rauer, H.: What makes a planet habitable? Astron. Astrophs. Rev. 17, 181–249 (2009)Google Scholar
  21. 21.
    Wood, B.E., Müller, H.-R., Zank, G., Linsky, J.L.: Measured mass loss rates of solar-like stars as a function of age and activity. ApJ 574, 412–425 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    Wood, B.E.: Astrospheres and solar-like stellar winds. Living Rev. Sol. Phys. 1(2), 1–44 (2004)ADSGoogle Scholar
  23. 23.
    Wood, B.E., Müller, H.-R., Zank, G.P., Linsky, J.L., Redfield, S.: New mass loss measurements from astrospheric Ly-\(\alpha \) absorption. ApJ 628, L143–L146 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    Lim, J., White, S.M.: Limits to mass outflows from late-type dwarf stars. ApJL 462, L91–L94 (1996)ADSCrossRefGoogle Scholar
  25. 25.
    Gaidos, E.J., Güdel, M., Blake, G.A.: The faint young Sun paradox: an observational test of an alternative solar model. Geophys. Res. Lett. 27, 501–503 (2000)ADSCrossRefGoogle Scholar
  26. 26.
    Wargelin, B.J., Drake, J.J.: Observability of stellar winds from late-type dwarfs via charge exchange X-ray emission. ApJL 546, L57–L60 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    Zaqarashvili, T.V., Oliver, R., Ballester, J.L., Carbonell, M., Khodachenko, M.L., Lammer, H., Leitzinger, M., Odert, P.: Rossby waves and polar spots in rapidly rotating stars: implications for stellar wind evolution. A and A 532, A139 (2011)ADSGoogle Scholar
  28. 28.
    Zaqarashvili, T.V., Carbonell, M., Oliver, R., Ballester, J.L.: Quasi-biennial oscillations in the solar tachocline caused by magnetic Rossby wave instabilities. ApJL 724, L95–L98 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    Grießmeier, J.M., Motschmann, U., Stadelmann, A., Penz, T., Lammer, H., Selsis, F., Ribas, I., Guinan, E.F., Biernat, H.K., Weiss, W.W.: The effect of tidal locking on the magnetospheric and atmospheric evolution of “Hot Jupiter”. Astron. Astrophys. 425, 618–630 (2007)Google Scholar
  30. 30.
    Grießmeier, J.-M., Preusse, S., Khodachenko, M., Motschmann, U.: Exoplanetary radio emission under different stellar wind conditions. Planet. Space Sci. 55, 618–630 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    Newkirk Jr., G.: Solar variability on time scales of 10\(^{5}\) years to 10\(^{9.6}\) years. Geochi. Cosmochi. Acta Suppl. 13, 293–301 (1980)Google Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  1. 1.Space Research InstituteAustrian Academy of SciencesGrazAustria

Personalised recommendations