Advertisement

Assessing Novelty of Research Articles Using Fuzzy Cognitive Maps

  • S. Sendhilkumar
  • G. S. Mahalakshmi
  • S. Harish
  • R. Karthik
  • M. Jagadish
  • S. Dilip Sam
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 182)

Abstract

In this paper, we compare and analyze the novelty of a scientific paper (text document) of a specific domain. Our experiments utilize the standard Latent Dirichlet Allocation (LDA) topic modeling algorithm to filter the redundant documents and the Ontology of a specific domain which serves as the knowledge base for that domain, to generate cognitive maps for the documents. We report results based on the distance measure such as the Euclidean distance measure that analyses the divergence of the concepts between the documents.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allan, J., Wade, C., Bolivar, A.: Retrieval and novelty detection at the sentence level, pp. 314–321. ACM (2003), http://doi.acm.org/10.1145/860435.860493
  2. 2.
    Croft, X.L.W.: Answer updating approach to novelty detection. ACM (2004), http://dx.doi.org/10.3115/1220575.1220665
  3. 3.
    Fernandez, R.T.: The effect of smoothing in language models for novelty detection. In: Future Directions in Information Access, FDIA 2007 (2007), http://www-gsi.dec.usc.es/_dlosada/fdia07.pdf
  4. 4.
    Gamon, M.: Graph-based text representation for novelty detection, pp. 17–24. ACM (2006), http://dl.acm.org/citation.cfm?id=1654758.1654762
  5. 5.
    Kok Wah Ng, L.C., Tsai, F.S., Goh, K.C.: Novelty detection for text documents using named entity recognition. IEEE (2007)Google Scholar
  6. 6.
    Schiffman, B., McKeown, K.R.: Context and learning in novelty detection, pp. 716–723. ACM (2005), http://dx.doi.org/10.3115/1220575.1220665
  7. 7.
    Stokes, N., Carthy, J.: First story detection using a composite document representation, pp. 1–8. ACM (2001), http://dx.doi.org/10.3115/1072133.1072182
  8. 8.
    Tsai, F.S., Zhang, Y.: D2S: Document-to-sentence framework for novelty detection, vol. 29(2), pp. 419–433. ACM (November 2011), http://dx.doi.org/10.1007/s10115-010-0372-2
  9. 9.
    Tsai, M.-F., Feng Tsai, M., Hsi Chen, H.: Some similarity computation methods in novelty detection. NIST (2002)Google Scholar
  10. 10.
    Yang, Y., Zhang, J., Carbonell, J., Jin, C.: Topic-conditioned novelty detection, pp. 688–693. ACM (2002), http://doi.acm.org/10.1145/775047.775150
  11. 11.
    Zhang, J., Ghahramani, Z.: A probabilistic model for online document clustering with application to novelty detection. In: Neural Information Processing Systems (NIPS), vol. 17 (2004)Google Scholar
  12. 12.
    Zhang, Y., Callan, J., Minka, T.: Novelty and redundancy detection in adaptive filtering, pp. 81–88. ACM (2002), http://doi.acm.org/10.1145/564376.564393
  13. 13.
    Zhao, L., Zhang, M., Ma, S.: The nature of novelty detection, vol. 9(5), pp. 521–541. ACM (November 2006), http://dx.doi.org/10.1007/s10791-006-9000-x

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • S. Sendhilkumar
    • 1
  • G. S. Mahalakshmi
    • 2
  • S. Harish
    • 2
  • R. Karthik
    • 2
  • M. Jagadish
    • 2
  • S. Dilip Sam
    • 2
  1. 1.Department of Information Science & TechnologyAnna UniversityChennaiIndia
  2. 2.Department of Computer Science & EngineeringAnna UniversityChennaiIndia

Personalised recommendations