Design of SCFDMA System Using MIMO

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 182)

Abstract

The aim of paper is to design SCFDMA system using SFBC and receiver diversity which provides satisfactory performance over fast fading channel environment. The performance evaluation will be checked through MATLAB R2009b simulator. There are comparisons of performance among 1x1 SCFDMA system, 2x1 SCFDMA system using SFBC, 1x2 SCFDMA system using receiver diversity and 2x2 SCFDMA system using SFBC and receiver diversity. We describe design of SCFDMA system using transmitter diversity technique and receiver diversity technique. We have compared the performance of these systems with the conventional SCFDMA system. The main focus is on design of SCFDMA system using SFBC and receiver diversity which enables desired system to combat detrimental effects of fast fading.

Keywords

3rd Generation Partnership Project Long Term Evolution(3GPP-LTE) Binary Phase Shift Keying(BPSK) Discrete Fourier Transform(DFT) Inverse Discrete Fourier Transform(IDFT) Localized Frequency Division Multiple Access(LFDMA) Maximum Ratio Receiver Combining(MRRC) Multiple Input Multiple Output(MIMO) Orthogonal Frequency Division Multiple Access (OFDMA) Peak to average power ratio(PAPR) Single Carrier Frequency Division Multiple Access(SCFDMA) Space Frequency Block Code(SFBC) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berardinelli, G., Frattasi, S., Rahman, M.I., Mogensen, P., et al.: OFDMA vs. SCFDMA: Performance Comparison in Local Area IMT-A Scenarios. IEEE Transactions on Wireless Communications 15(5), 64–72 (2008)CrossRefGoogle Scholar
  2. Myung, H.G., Goodman, D.J.: Single carrier FDMA-A New Air Interface for LTE. Wiley Series on Wireless Communications and Mobile Computing (2008)Google Scholar
  3. Khan, F.: LTE for 4G Mobile Broadband-air interface technologies and performance. Cambridge University Press (2009)Google Scholar
  4. Wang, Z., Ma, X., Giannakis, G.B.: OFDM or Single Carrier Transmissions? IEEE Transactions on Communications 52(3) (March 2004)Google Scholar
  5. Yune, T., Choi, C., Im, G., Lim, J., et al.: SCFDMA with Iterative Multiuser Detection: Improvements on Power/Spectral Efficiency. IEEE Magazine on Communications 48(3), 164–171 (2010)CrossRefGoogle Scholar
  6. Lim, J., Choi, C., Yune, T., Im, G.: Iterative Multiuser Detection for Single-Carrier Modulation with Frequency-Domain Equalization. IEEE Letters on Communications 11(6), 471–473 (2007)CrossRefGoogle Scholar
  7. Myung, H.G., Kyungjin, O., Junsung, L., Goodman, D.J.: Channel-Dependent Scheduling of an Uplink SCFDMA System with Imperfect Channel Information. In: IEEE Conference on Wireless Communications and Networking, pp. 1860–1864 (April 2008)Google Scholar
  8. Wong, I.C., Oteri, O., McCoy, W.: Optimal Resource Allocation in Uplink SCFDMA Systems. IEEE Transactions on Wireless Communications 8(5) (May 2009)Google Scholar
  9. Zhang, W., Xia, X.G., Letaief, K.B.: Space Time/Frequency Coding for MIMO-OFDM in Next Generation Broadband Wireless Systems. IEEE Transactions on Wireless Communications (June 2007)Google Scholar
  10. Alamouti, S.M.: A Simple Transmit Diversity Technique for Wireless Communications. IEEE Journal on Select Areas in Communications 16(8), 30–38 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Communication Systems, E&C Dept.Indian Institute of TechnologyRoorkeeIndia

Personalised recommendations