Planning Stable Paths for Urban Search and Rescue Robots

  • Mohammad Norouzi
  • Freek De Bruijn
  • Jaime Valls Miró
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7416)

Abstract

Rescue robots are platforms designed to operate in challenging and uneven surfaces. These robots are often equipped with manipulator arms and varying traction arrangements. As such, it is possible to reconfigure the kinematic of robot in order to reduce potential instabilities, such as those leading to vehicle tip-over. This paper proposes a methodology to plan feasible paths through uneven topographies by planning stable paths that account for the safe interaction between vehicle and terrain. The proposed technique, based on a gradient stability criterion, is validated with two of the best known path search strategies in 3D lattices, i.e. the A* and the Rapidly-Exploring Random Trees. Using real terrain data, simulation results obtained with the model of a real rescue robot demonstrate significant improvements in terms of paths that are able to automatically avoid regions of potential instabilities, to concentrate on those where the freedom of exploiting posture adaptation permits generation of optimally safe paths.

Keywords

Stability Analysis Pose Reconfigurability Path Planning Rescue Robot 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beck, C., Miro, J.V., Dissanayake, G.: Trajectory optimisation for increased stability of mobile robots operating in uneven terrains. In: Proc. IEEE 7th International Conference on Control and Automation, pp. 1913–1919 (2009)Google Scholar
  2. 2.
    Ben-Tzvi, P., Ito, S., Goldenberg, A.A.: Autonomous stair climbing with reconfigurable tracked mobile robot. In: Proc. IEEE International Workshop on Robotic and Sensors Environments, Ottawa, Canada, October 12-13 (2007)Google Scholar
  3. 3.
    Besseron, G., Grand, C., Amar, F.B., Bidaud, P.: Decoupled control of the high mobility robot hylos based on a dynamic stability margin. In: Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, September 22-23 (2008)Google Scholar
  4. 4.
    Chonnaparamutt, W., Birk, A.: A Fuzzy Controller for Autonomous Negotiation of Stairs by a Mobile Robot with Adjustable Tracks. In: Visser, U., Ribeiro, F., Ohashi, T., Dellaert, F. (eds.) RoboCup 2007. LNCS (LNAI), vol. 5001, pp. 196–207. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Freitas, G., Gleizer, G., Lizarralde, F., Hsu, L.: Kinematic reconfigurability control for an environmental mobile robot operating in the amazon rain forest. Journal of Field Robotics 27, 197–216 (2010)Google Scholar
  7. 7.
    Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics 4, 100–107 (1968)CrossRefGoogle Scholar
  8. 8.
    Inoue, D., Ohno, K., Nakamura, S., Tadokoro, S.: Whole-body touch sensors for tracked mobile robots using force-sensitive chain guides. In: Proc. IEEE International Workshop on Safety, Security and Rescue Robotics, Sendai, Japan (October 2008)Google Scholar
  9. 9.
    Jaillet, L., Cortés, J., Simoén, T.: Sampling-based path planning on configuration-space costmaps. IEEE Transactions on Robotics 26, 635–646 (2010)CrossRefGoogle Scholar
  10. 10.
    Korf, R.: Depth-first iterative-deepening: An optimal admissible tree search. Artificial Intelligence 27(1), 97–119 (1985)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Nielsson, N.: Problem-Solving Methods in Artificial Intelligence. McGraw-Hill (1971)Google Scholar
  12. 12.
    Oh, K., Hwang, J.P., Kim, E., Lee, H.: Path planning of a robot manipulator using retrieval rrt strategy. World Academy of Science, Engineering and Technology 25, 171–175 (2007)Google Scholar
  13. 13.
    Papadopoulos, E.G., Rey, D.A.: A new measure of tipover stability margin for mobile manipulators. In: Proc. IEEE International Conference on Robotics and Automation, Minneapolis, USA, vol. 4, pp. 3111–3116 (1996)Google Scholar
  14. 14.
    Rey, D.A., Papadoupoulos, E.G.: Online automatic tipover prevention for mobile manipulators. In: Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, pp. 1273–1278 (1997)Google Scholar
  15. 15.
    Rey, D.A., Papadoupoulos, E.G.: The force angle measure of tipover stability margin for mobile manipulatiors. Vehicle System Dynamics 33, 29–48 (2000)CrossRefGoogle Scholar
  16. 16.
    Rohnert, H.: Shortest path in the plane with convex polygonal obstacles. Information Processing Letters 23(2), 71–76 (1986)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Schenker, P., Huntsberger, T., Pirjanian, P., Dubowsky, S., Iagnemma, K., Sujan, V.: Rovers for agile, intelligent traverse of challenging terrain. In: Proceedings of the 7th International Symposium on Artificial Intelligence, Robotics and Automation in Space, i-SAIRAS, Nara, Japan (May 2003)Google Scholar
  18. 18.
    Shoval, S.: Stability of a multi tracked robot traveling over steep slopes. In: Proc. IEEE International Conference on Robotics and Automation, New Orleans, LA, USA (2004)Google Scholar
  19. 19.
    Urmson, C., Simmons, R.: Approaches for heuristically biasing rrt growth. In: Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1178–1183 (2003)Google Scholar
  20. 20.
    Valle, S.L.: Rapidly-exploring random trees: A new tool for path planning. Tech. rep., Iowa State University, Dept. of Computer Science (1998)Google Scholar
  21. 21.
    Wang, W., Du, Z., Sun, L.: Dynamic load effect on tracked robot obstacle performance. In: Proc. of International Conference on Mechatronics WA1-B-4, Kumamoto, Japan (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mohammad Norouzi
    • 1
  • Freek De Bruijn
    • 1
  • Jaime Valls Miró
    • 1
  1. 1.Faculty of Engineering and ITUniversity of Technology, Sydney (UTS)SydneyAustralia

Personalised recommendations