Advertisement

A Low Cost Ground Truth Detection System for RoboCup Using the Kinect

  • Piyush Khandelwal
  • Peter Stone
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7416)

Abstract

Ground truth detection systems can be a crucial step in evaluating and improving algorithms for self-localization on mobile robots. Selecting a ground truth system depends on its cost, as well as on the detail and accuracy of the information it provides. In this paper, we present a low cost, portable and real-time solution constructed using the Microsoft Kinect RGB-D Sensor. We use this system to find the location of robots and the orange ball in the Standard Platform League (SPL) environment in the RoboCup competition. This system is fairly easy to calibrate, and does not require any special identifiers on the robots. We also provide a detailed experimental analysis to measure the accuracy of the data provided by this system. Although presented for the SPL, this system can be adapted for use with any indoor structured environment where ground truth information is required.

Keywords

ground truth robocup kinect 

References

  1. 1.
    Point cloud library, http://www.ros.org/wiki/pcl
  2. 2.
    Arun, K., Huang, T., Blostein, S.: Least-squares fitting of two 3-D point sets. IEEE Transactions on Pattern Analysis and Machine Intelligence 9(5), 698–700 (1987)CrossRefGoogle Scholar
  3. 3.
    Azevedo, J., Cruz, C., Cunha, J., Cunha, M., Lau, N., Martins, C., Neves, A., Pedrosa, E., Pereira, A., Teixeira, A., et al.: Cambada@ home 2011 team description paper (2011), http://www.ieeta.pt/atri/cambada/athome/docs/CAMBADAHome_TDP2011.pdf
  4. 4.
    Chetverikov, D., Svirko, D., Stepanov, D., Krsek, P.: The trimmed iterative closest point algorithm. Pattern Recognition 3, 30545 (2002)Google Scholar
  5. 5.
    Eberly, D.: Least squares fitting of data. Magic Software, Chapel Hill (2000)Google Scholar
  6. 6.
    Eggert, D., Lorusso, A., Fisher, R.: Estimating 3-D rigid body transformations: a comparison of four major algorithms. Machine Vision and Applications 9(5), 272–290 (1997)CrossRefGoogle Scholar
  7. 7.
    Gelfand, N., Mitra, N., Guibas, L., Pottmann, H.: Robust global registration. In: Proceedings of the Third Eurographics Symposium on Geometry Processing, pp. 197–206. Eurographics Association (2005)Google Scholar
  8. 8.
    Jansen, S., Lier, C., Neculoiu, P., Nolte, A., Oost, C., Richthammer, V., Schimbinschi, F., Schutten, M., Shantia, A., Snijders, R., et al.: Borg-the robocup@ home team of the university of groningen team description paper, http://www.ai.rug.nl/crl/uploads/Site/BORG_TDP_2011.pdf
  9. 9.
    Niemüller, T., Ferrein, A., Eckel, G., Pirro, D., Podbregar, P., Kellner, T., Rath, C., Steinbauer, G.: Providing Ground-Truth Data for the Nao Robot Platform. In: Ruiz-del-Solar, J., Chown, E., Plöger, P.G. (eds.) RoboCup 2010. LNCS, vol. 6556, pp. 133–144. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R., Ng, A.: ROS: an open-source Robot Operating System. In: ICRA Workshop on Open Source Software (2009)Google Scholar
  11. 11.
    Röfer, T., Laue, T., Müller, J., Burchardt, A., Damrose, E., Fabisch, A., Feldpausch, F., Gillmann, K., Graf, C., de Haas, T.J., Härtl, A., Honsel, D., Kastner, P., Kastner, T., Markowsky, B., Mester, M., Peter, J., Riemann, O.J.L., Ring, M., Sauerland, W., Schreck, A., Sieverdingbeck, I., Wenk, F., Worch, J.H.: B-human team report and code release 2010 (2010), http://www.b-human.de/file_download/33/bhuman10_coderelease.pdf
  12. 12.
    Sridharan, M., Stone, P.: Real-time vision on a mobile robot platform. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (August 2005)Google Scholar
  13. 13.
    Stulp, F., Gedikli, S., Beetz, M.: Evaluating multi-agent robotic systems using ground truth. In: Proceedings of the Workshop on Methods and Technology for Empirical Evaluation of Multi-agent Systems and Multi-Robot Teams, MTEE (2004)Google Scholar
  14. 14.
    Veltrop, T.: Humanoid robot navigation teleoperation using nao and kinect, http://www.robots-dreams.com/2011/01/humanoid-robot-navigation-teleoperation-using-nao-and-kinect-video.html
  15. 15.
    Zickler, S., Laue, T., Birbach, O., Wongphati, M., Veloso, M.: SSL-Vision: The Shared Vision System for the RoboCup Small Size League. In: Baltes, J., Lagoudakis, M.G., Naruse, T., Ghidary, S.S. (eds.) RoboCup 2009. LNCS, vol. 5949, pp. 425–436. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Piyush Khandelwal
    • 1
  • Peter Stone
    • 1
  1. 1.Department of Computer ScienceThe University of Texas at AustinUSA

Personalised recommendations