Advertisement

Robot Orientation with Histograms on MSL

  • Fernando Ribeiro
  • Gil Lopes
  • Bruno Pereira
  • João Silva
  • Paulo Ribeiro
  • João Costa
  • Sérgio Silva
  • João Rodrigues
  • Paulo Trigueiros
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7416)

Abstract

One of the most important tasks on robot soccer is localization. The team robots should self-localize on the 18 x 12 meters soccer field. Since a few years ago the soccer field has increased and the corner posts were removed and that increased the localization task complexity. One important aspect to take care for a proper localization is to find out the robot orientation. This paper proposes a new technique to calculate the robot orientation. The proposed method consists of using a histogram of white-green transitions (to detect the lines on the field) to know the robot orientation. This technique does not take much computational time and proves to be very reliable.

Keywords

Robot Orientation Histogram Robot Localization Middle Size League 

References

  1. 1.
    Beck, D., Niemueller, T.: Allemaniacs team description paper: Robocup (2009)Google Scholar
  2. 2.
    Hafner, R., Lange, S., Riedmiller, M., Welker, S.: Brainstormers tribots team description paper: RoboCup (2009)Google Scholar
  3. 3.
    Heinemann, P., Haase, J., Zell, A.: A Novel Approach to Efficient Monte-Carlo Localization in RoboCup. In: Lakemeyer, G., Sklar, E., Sorrenti, D.G., Takahashi, T. (eds.) RoboCup 2006. LNCS (LNAI), vol. 4434, pp. 322–329. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Hundelshausen, F.V., Schreiber, M., Wiesel, F., Liers, A., Rojas, R.,, M.: A force field pattern matching method for mobile robots. Tech. rep. (2003)Google Scholar
  5. 5.
    Komoriya, Y., Hashimoto, R., Miyoshi, K., Ogawa, Y., Sakakibara, D., Sawada, J., Tahara, K., Fukushima, H., Mitani, K., Yamakage, R., Asano, Y., Demura, K.: Winkit team description paper: RoboCup (2009)Google Scholar
  6. 6.
    Lauer, M., Lange, S., Riedmiller, M.: Calculating the Perfect Match: An Efficient and Accurate Approach for Robot Self-Localization. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 142–153. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Luo, R., Min, H.: A new omni-vision based self-localization method for soccer robot. In: Proceedings of the 2009 WRI World Congress on Software Engineering, WCSE 2009, vol. 1, pp. 126–130. IEEE Computer Society, Washington, DC (2009)CrossRefGoogle Scholar
  8. 8.
    Nassiraei, A.A., Kitazumi, Y., Ishida, S., Toriyama, H., Ono, H., Takenaka, K., Shinpuku, N., Takaki, M., Fukunaga, Y., Yamada, K., Takemura, Y., Godler, I., Ishii1, K., Miyamoto, H.: Hibikino-musashi team description paper: RoboCup (2010)Google Scholar
  9. 9.
    Su, S., Gu, Z., Chen, X., Dong, L., Huang, Y., Song, X., Wu, L.: Endeavor team description paper: RoboCup (2010)Google Scholar
  10. 10.
    Utz, H., Neubeck, A., Mayer, G., Kraetzschmar, G.K.: Improving Vision-Based Self-Localization. In: Kaminka, G.A., Lima, P.U., Rojas, R. (eds.) RoboCup 2002. LNCS (LNAI), vol. 2752, pp. 25–40. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Fernando Ribeiro
    • 1
  • Gil Lopes
    • 1
  • Bruno Pereira
    • 1
  • João Silva
    • 1
  • Paulo Ribeiro
    • 1
  • João Costa
    • 1
  • Sérgio Silva
    • 1
  • João Rodrigues
    • 1
  • Paulo Trigueiros
    • 1
  1. 1.Industrial Electronics DepartmentUniv. of MinhoGuimarãesPortugal

Personalised recommendations