Local Multiresolution Path Planning in Soccer Games Based on Projected Intentions

  • Matthias Nieuwenhuisen
  • Ricarda Steffens
  • Sven Behnke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7416)

Abstract

Following obstacle free paths towards the ball and avoiding opponents while dribbling are key skills to win soccer games. These tasks are challenging as the robot’s environment in soccer games is highly dynamic. Thus, exact plans will likely become invalid in the future and continuous replanning is necessary. The robots of the RoboCup Standard Platform League are equipped with limited computational resources, but have to perform many parallel tasks with real-time requirements. Consequently, path planning algorithms have to be fast.

In this paper, we compare two approaches to reduce the planning time by using a local-multiresolution representation or a log-polar representation of the environment. Both approaches combine a detailed representation of the vicinity of the robot with a reasonably short planning time. We extend the multiresolution approach to the time dimension and we predict the opponents movement by projecting the planning robot’s intentions.

Keywords

Mobile Robot Path Planning Uniform Grid Ultrasonic Sensor Soccer Game 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Behnke, S.: Local Multiresolution Path Planning. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS (LNAI), vol. 3020, pp. 332–343. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Behnke, S., Stückler, J.: Hierarchical Reactive Control for Humanoid Soccer Robots. International Journal of Humanoid Robots (IJHR) 5(3), 375–396 (2008)CrossRefGoogle Scholar
  3. 3.
    Borenstein, J., Koren, Y.: The Vector Field Histogram-Fast Obstacle Avoidance for Mobile Robots. IEEE Trans. on Robotics and Automation 7(3), 278–288 (1991)CrossRefGoogle Scholar
  4. 4.
    Kaelbling, L., Lozano-Pérez, T.: Hierarchical Task and Motion Planning in the Now. MIT-CSAIL-TR-2010-026 (2010)Google Scholar
  5. 5.
    Lagoudakis, M., Maida, A.: Neural maps for mobile robot navigation. In: IJCNN 1999 (1999)Google Scholar
  6. 6.
    Longega, L., Panzieri, S., Pascucci, F., Ulivi, G.: Indoor robot navigation using log-polar local maps. In: Prep. of 7th Int. IFAC Symp. on Robot Control, pp. 229–234 (2003)Google Scholar
  7. 7.
    RoboCup Technical Commitee: RoboCup Standard Platform League Rule Book (2010)Google Scholar
  8. 8.
    Röfer, T., Laue, T., Müller, J., Burchardt, A., Damrose, E., Fabisch, A., Feldpausch, F., Gillmann, K., Graf, C., de Haas, T.J., Härtl, A., Honsel, D., Kastner, P., Kastner, T., Markowsky, B., Mester, M., Peter, J., Riemann, O.J.L., Ring, M., Sauerland, W., Schreck, A., Sieverdingbeck, I., Wenk, F., Worch, J.H.: B-Human Team Report and Code Release (2010), http://www.b-human.de/file_download/33/bhuman10_coderelease.pdf
  9. 9.
    Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice-Hall (2009)Google Scholar
  10. 10.
    Sermanet, P., Hadsell, R., Scoffier, M., Muller, U., LeCun, Y.: Mapping and planning under uncertainty in mobile robots with long-range perception. In: Proc. of IROS (2008)Google Scholar
  11. 11.
    Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics (Intelligent Robotics and Autonomous Agents). MIT Press (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Matthias Nieuwenhuisen
    • 1
  • Ricarda Steffens
    • 1
  • Sven Behnke
    • 1
  1. 1.Autonomous Intelligent Systems Group, Institute for Computer Science VIUniversity of BonnGermany

Personalised recommendations