Advertisement

The Ontology Lifecycle in RoboCup: Population from Text and Execution

  • Stephan Gspandl
  • Andreas Hechenblaickner
  • Michael Reip
  • Gerald Steinbauer
  • Máté Wolfram
  • Christoph Zehentner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7416)

Abstract

In RoboCup it is important to build up domain knowledge for decision-making. Unfortunately, this is a time-consuming and laborious job. At championships easy adaptability of this domain knowledge can be especially crucial as teams need to be able to change tactics and adjust to opponent behavior as fast as possible. An intuitive interface to the agent is therefore necessary.

In this paper, we present a methodology to automatically populate a domain ontology from natural language text. The resulting populated ontology can then be deployed in a multi-agent system. This automatic transformation of text to knowledge for decision-making thus provides such an intuitive interface to the agents. It is embedded into the broader (up to now) theoretical context of an ontology lifecycle.

We have created a proof-of-concept implementation in the 2D RoboCup Simulation League on the base of tactics descriptions from soccer literature. Experiments show that 71% of tactics are perfectly transformed and 86% of the actions are executed correctly in terms of geometric relations.

Keywords

Natural Language Processing Domain Ontology Intuitive Interface Natural Language Text Natural Language Processing Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amardeilh, F., Laublet, P., Minel, J.L.: Document annotation and ontology population from linguistic extractions. In: Proceedings of the 3rd International Conference on Knowledge Capture (2005)Google Scholar
  2. 2.
    Branavan, S., Chen, H., Zettlemoyer, L., Barzilay, R.: Reinforcement learning for mapping instructions to actions. In: Proce. of the Joint Conf. of the 47th Annual Meeting of the ACL and the 4th International Joint Conf. on Natural Language Processing of the AFNLP, Singapore, pp. 82–90 (2009)Google Scholar
  3. 3.
    Chen, D.L., Mooney, R.J.: Learning to sportscast: A test of grounded language acquisition. In: Proc. of the 25th International Conf. on Machine Learning, Finnland (2008)Google Scholar
  4. 4.
    Chen, M., Foroughi, E., Heintz, F., Huang, Z., Kapetanakis, S., Kostiadis, K., Kummenje, J., Noda, I., Obst, O., Riley, P., Steffens, T., Wang, Y., Yin, X.: RoboCup Soccer Server. In: The RoboCup Federation (Juli 2002)Google Scholar
  5. 5.
    Cimiano, P., Haase, P., Herold, M., Mantel, M., Buitelaar, P.: Lexonto: A model for ontology lexicons for ontology-based nlp (2007)Google Scholar
  6. 6.
    Cimiano, P.: Ontology Learning and Population from Text: Algorithms, Evaluation and Applications, 1st edn. Springer (October 2006)Google Scholar
  7. 7.
    Fascetti, E., Scaia, R.: Soccer Attacking Schemes and Training Execrcises. Reedswain Publishing (1998)Google Scholar
  8. 8.
    Forbus, K.D., Usher, J.: Sketching for knowledge capture: a progress report. In: Proceedings of the 7th International Conference on Intelligent User Interfaces, pp. 71–77. ACM, New York (2002)CrossRefGoogle Scholar
  9. 9.
    Gspandl, S., Reip, M., Steinbauer, G., Wotawa, F.: From sketch to plan. In: 24th International Workshop on Qualitative Reasoning (2010)Google Scholar
  10. 10.
    Hammond, T., Davis, R.: LADDER: A language to describe drawing, display, and editing in sketch recognition. In: Proceedings of the 2003 Internaltional Joint Conference on Artificial Intelligence (IJCAI), Acapulco, Mexico, pp. 416–467 (2003)Google Scholar
  11. 11.
    Horridge, M., Parsia, B., Sattler, U.: Explaining Inconsistencies in OWL Ontologies. In: Godo, L., Pugliese, A. (eds.) SUM 2009. LNCS, vol. 5785, pp. 124–137. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Kemke, C.: An action ontology framework for natural language interfaces to agent systems (2007)Google Scholar
  13. 13.
    Liang, P., Jordan, M., Klein, D.: Learning semantic correspondences with less supervision. In: Proc. of the Joint Conf. of the 47th Annual Meeting of the ACL and the 4th International Joint Conf. on Natural Language Processing of the AFNLP, pp. 91–99. Association for Computational Linguistics, Singapore (2009)Google Scholar
  14. 14.
    Lucchesi, M.: Coaching the 3-4-1-2 and 4-2-3-1. Reedswain Publishing (2002)Google Scholar
  15. 15.
    Maedche, A., Staab, S.: Learning ontologies for the semantic web. In: Semantic Web (2001)Google Scholar
  16. 16.
    Mathieu, P., Routier, J.C., Secq, Y.: Towards a Pragmatic Use of Ontologies in Multi-Agent Platforms. In: Palade, V., Howlett, R.J., Jain, L. (eds.) KES 2003. LNCS (LNAI), vol. 2773, pp. 1395–1402. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Maynard, D., Li, Y., Peters, W.: Nlp techniques for term extraction and ontology population. In: Proceeding of the 2008 Conference on Ontology Learning and Population: Bridging the Gap between Text and Knowledge (2008)Google Scholar
  18. 18.
    Miller, G.A., Beckwith, R., Fellbaum, C., Gross, D., Miller, K.: Introduction to WordNet: An on-line lexical database (1993)Google Scholar
  19. 19.
    Mousavi, A., Nordin, M.J., Othman, Z.A.: An ontology driven, procedural reasoning system-like agent model, for multi-agent based mobile workforce brokering systems. Journal of Computer Science 6, 557–565 (2010)CrossRefGoogle Scholar
  20. 20.
    Navigli, R., Velardi, P.: Learning domain ontologies from document warehouses and dedicated web sites. Computational Linguistics 30 (2004)Google Scholar
  21. 21.
    Nilsson, N.J., Fikes, R.E.: Strips: A new approach to the application of theorem proving to problem solving. Artifical Intelligence 2(3-4), 189–208 (1971)zbMATHCrossRefGoogle Scholar
  22. 22.
    Petasis, G., Karkaletsis, V., Paliouras, G.: Ontology population and enrichment: State of the art. Tech. rep. (2007)Google Scholar
  23. 23.
    Poon, H., Domingos, P.: Unsupervised ontology induction from text. In: Proc. of the 48th Annual Meeting of the Association for Computational Linguistics (2010)Google Scholar
  24. 24.
    Russel, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice Hall International (2003)Google Scholar
  25. 25.
    Strohmaier, M., Kröll, M.: Analyzing human intentions in natural language text. In: Proceedings of The Fifth International Conference on Knowledge Capture (K-CAP 2009) (September 2009)Google Scholar
  26. 26.
    Strohmaier, M., Lux, M., Granitzer, M., Scheir, P., Liaskos, S., Yu, E.: How do users express goals on the web? - an exploration of intentional structures in web search. In: We. Know 2007 (2007)Google Scholar
  27. 27.
    Toutanova, K., Manning, C.D.: Enriching the knowledge sources used in a maximum entropy part-of-speech tagger. In: Proceedings of the EMNLP/VLC 2000, Hong Kong, pp. 63–70 (2000)Google Scholar
  28. 28.
    Valarakos, A.G., Paliouras, G., Karkaletsis, V., Vouros, G.A.: Enhancing Ontological Knowledge Through Ontology Population and Enrichment. In: Motta, E., Shadbolt, N.R., Stutt, A., Gibbins, N. (eds.) EKAW 2004. LNCS (LNAI), vol. 3257, pp. 144–156. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Stephan Gspandl
    • 1
  • Andreas Hechenblaickner
    • 1
  • Michael Reip
    • 1
  • Gerald Steinbauer
    • 1
  • Máté Wolfram
    • 1
  • Christoph Zehentner
    • 1
  1. 1.Institute for Software TechnologyGraz University of TechnologyGrazAustria

Personalised recommendations