Perceiving Forces, Bumps, and Touches from Proprioceptive Expectations

  • Christopher Stanton
  • Edward Ratanasena
  • Sajjad Haider
  • Mary-Anne Williams
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7416)


We present a method for enabling an Aldebaran Nao humanoid robot to perceive bumps and touches caused by physical contact forces. Dedicated touch, tactile or force sensors are not used. Instead, our approach involves the robot learning from experience to generate a proprioceptive motor sensory expectation from recent motor position commands. Training involves collecting data from the robot characterised by the absence of the impacts we wish to detect, to establish an expectation of “normal” motor sensory experience. After learning, the perception of any unexpected force is achieved by the comparison of predicted motor sensor values with sensed motor values for each DOF on the robot. We demonstrate our approach allows the robot to reliably detect small (and also large) impacts upon the robot (at each individual joint servo motor) with high, but also varying, degrees of sensitivity for different parts of the body. We discuss current and possible applications for robots that can develop and exploit proprioceptive expectations during physical interaction with the world.


motor learning Nao robot soccer anticipation collision detection 


  1. 1.
    Calinon, S., Sardellitti, I., Caldwell, D.: Learning-based control strategy for safe human-robot interaction exploiting task and robot redundancies. In: Intelligent Robots and Systems (IROS), pp. 249–254. IEEE (2010)Google Scholar
  2. 2.
    Chalup, S., Murch, C., Quinlan, M.J.: Machine learning with AIBO robots in the Four-Legged League of RoboCup. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 37, 297–310 (2007)Google Scholar
  3. 3.
    Chen, W., Sun, Y., Huang, Y.: A collision detection system for an assistive robotic manipulator. Life System Modeling and Intelligent Computing 97, 117–123 (2010)CrossRefGoogle Scholar
  4. 4.
    Hausknecht, M., Stone, P.: Learning Powerful Kicks on the Aibo ERS-7: The Quest for a Striker. In: Ruiz-del-Solar, J., Chown, E., Ploeger, P.G. (eds.) RoboCup 2010. LNCS (LNAI), vol. 6556, pp. 254–265. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Hoffmann, J., Göhring, D.: Sensor-Actuator-Comparison as a Basis for Collision Detection for a Quadruped Robot. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004. LNCS (LNAI), vol. 3276, pp. 150–159. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Meriçli, T., Meriçli, Ç., Akın, H.L.: A Robust Statistical Collision Detection Framework for Quadruped Robots. In: Iocchi, L., Matsubara, H., Weitzenfeld, A., Zhou, C. (eds.) RoboCup 2008. LNCS (LNAI), vol. 5399, pp. 145–156. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Quinlan, M.J., Murch, C.L., Middleton, R.H., Chalup, S.K.: Traction Monitoring for Collision Detection with Legged Robots. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS (LNAI), vol. 3020, pp. 374–384. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Vail, D., Veloso, M.: Learning from accelerometer data on a legged robot. In: Proc. IAV 2004. Springer, Lisbon (2004)Google Scholar
  9. 9.
    Visser, L., Carloni, R., Stramigioli, S.: Energy efficient control of robots with variable stiffness actuators. In: Proceedings of the 8th IFAC Symposium on Nonlinear Control Systems, NOLCOS 2010, Bologna, Italy, pp. 1199–1204. IFAC (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Christopher Stanton
    • 1
  • Edward Ratanasena
    • 1
  • Sajjad Haider
    • 2
  • Mary-Anne Williams
    • 1
  1. 1.Innovation and Enterprise Research LaboratoryUniversity of TechnologySydneyAustralia
  2. 2.AI LabInstitute of Business AdministrationKarachiPakistan

Personalised recommendations