B-Human 2011 – Eliminating Game Delays

  • Tim Laue
  • Thomas Röfer
  • Katharina Gillmann
  • Felix Wenk
  • Colin Graf
  • Tobias Kastner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7416)

Abstract

After having won the Standard Platform League competitions in 2009 and 2010, the B-Human software already included sophisticated solutions for most relevant subtasks, such as vision, state estimation, and walking. Therefore, the development towards RoboCup 2011 did not focus on replacing specific low-quality components, but was guided by an overall goal: eliminating game delays by more efficient actions and faster reactions to game state changes. This required several changes all over the system. In this paper, we present some of the developments that had the most impact regarding our goal: different ball models and corresponding cooperative ball tracking and retrieval strategies, a path planner as well as new approaches for tackling situations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bowling, M., Browning, B., Veloso, M.: Plays as effective multiagent plans enabling opponent-adaptive play selection. In: Proc. of the 14th Int. Conf. on Automated Planning and Scheduling (ICAPS), Whistler, BC, Canada, pp. 376–383 (2004)Google Scholar
  2. 2.
    Czarnetzki, S., Kerner, S., Klagges, D.: Combining Key Frame Based Motion Design with Controlled Movement Execution. In: Baltes, J., Lagoudakis, M.G., Naruse, T., Ghidary, S.S. (eds.) RoboCup 2009. LNCS (LNAI), vol. 5949, pp. 58–68. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Czarnetzki, S., Kerner, S., Urbann, O.: Applying Dynamic Walking Control for Biped Robots. In: Baltes, J., Lagoudakis, M.G., Naruse, T., Ghidary, S.S. (eds.) RoboCup 2009. LNCS (LNAI), vol. 5949, pp. 69–80. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Fabisch, A., Laue, T., Röfer, T.: Robot recognition and modeling in the RoboCup Standard Platform League. In: Pagello, E., Zhou, C., Behnke, S., Menegatti, E., Röfer, T., Stone, P. (eds.) Proc. of the Fifth Workshop on Humanoid Soccer Robots at the 2010 IEEE-RAS Int. Conf. on Humanoid Robots, Nashville, TN, USA (2010)Google Scholar
  5. 5.
    Fox, D., Burgard, W., Dellaert, F., Thrun, S.: Monte-Carlo localization: Efficient position estimation for mobile robots. In: Proc. of the Sixteenth National Conf. on Artificial Intelligence, Orlando, FL, USA, pp. 343–349 (1999)Google Scholar
  6. 6.
    Graf, C., Röfer, T.: A center of mass observing 3D-LIPM gait for the RoboCup Standard Platform League humanoid. In: Röfer, T., Mayer, N.M., Savage, J., Saranli, U. (eds.) RoboCup 2011. LNCS, vol. 7416, pp. 102–113. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Gutmann, J.S., Fox, D.: An Experimental Comparison of Localization Methods Continued. In: Proc. of the 2002 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS 2002), Lausanne, Switzerland, vol. 1, pp. 454–459 (2002)Google Scholar
  8. 8.
    Kalman, R.E.: A new approach to linear filtering and prediction problems. Transactions of the ASME-Journal of Basic Engineering 82(Series D), 35–45 (1960)CrossRefGoogle Scholar
  9. 9.
    Kuffner, J.J., LaValle, S.M.: RRT-connect: An efficient approach to single-query path planning. In: Proc. of the 2000 IEEE Int. Conf. on Robotics and Automation (ICRA 2000), San Francisco, CA, USA, vol. 2, pp. 995–1001 (2000)Google Scholar
  10. 10.
    LaValle, S.M.: Rapidly-exploring random trees: A new tool for path planning. Tech. Rep. TR 98-11, Computer Science Dept., Iowa State University (1998)Google Scholar
  11. 11.
    LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic planning. In: Proc. of the 1999 IEEE Int. Conf. on Robotics and Automation (ICRA 1999), Detroit, MI, USA, vol. 1, pp. 473–479 (1999)Google Scholar
  12. 12.
    Metzler, S., Nieuwenhuisen, M., Behnke, S.: Learning Visual Obstacle Detection Using Color Histogram Features. In: Röfer, T., Mayer, N.M., Savage, J., Saranli, U. (eds.) RoboCup 2011. LNCS, vol. 7416, pp. 149–161. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Müller, J., Laue, T., Röfer, T.: Kicking a Ball – Modeling Complex Dynamic Motions for Humanoid Robots. In: Ruiz-del-Solar, J., Chown, E., Ploeger, P.G. (eds.) RoboCup 2010. LNCS (LNAI), vol. 6556, pp. 109–120. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Otsu, N.: A threshold selection method from grey level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Steffens, R., Nieuwenhuisen, M., Behnke, S.: Multiresolution path planning in dynamic environments for the standard platform league. In: Pagello, E., Zhou, C., Behnke, S., Menegatti, E., Röfer, T., Stone, P. (eds.) Proc. of the Fifth Workshop on Humanoid Soccer Robots in conjunction with the 2010 IEEE-RAS Int. Conf. on Humanoid Robots, Nashville, TN, USA, pp. 59–64 (2010)Google Scholar
  16. 16.
    Tilgner, R., Reinhardt, T., Borkmann, D., Seering, S., Kalbitz, T., Fritzsche, R.: Nao-Team HTWK – team description paper. In: Röfer, T., Mayer, N.M., Savage, J., Saranli, U. (eds.) RoboCup 2011: Robot Soccer World Cup XV Preproceedings, RoboCup Federation (2011)Google Scholar
  17. 17.
    Xu, Y., Mellmann, H.: Adaptive Motion Control: Dynamic Kick for a Humanoid Robot. In: Dillmann, R., Beyerer, J., Hanebeck, U.D., Schultz, T. (eds.) KI 2010. LNCS, vol. 6359, pp. 392–399. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tim Laue
    • Thomas Röfer
      • Katharina Gillmann
        • 1
      • Felix Wenk
        • 1
      • Colin Graf
        • 1
      • Tobias Kastner
        • 1
      1. 1.Mathematik und InformatikUniversität Bremen, Fachbereich 3BremenGermany

      Personalised recommendations