Advertisement

A Portable Ground-Truth System Based on a Laser Sensor

  • Román Marchant
  • Pablo Guerrero
  • Javier Ruiz-del-Solar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7416)

Abstract

State estimation is of crucial importance to mobile robotics since it determines in a great measure its ability to model the world from noisy observations. In order to quantitatively evaluate state-estimation methods, the availability of ground-truth data is essential since it provides a target that the result of the state-estimation methods should approximate. Most of the reported ground-truth systems require a complex assembly which limit their applicability and make their set-up long and complicated. Furthermore, they often require a long calibration procedure. Additionally, they do not present measures of their accuracy. This paper proposes a portable laser-based ground-truth system. The proposed system can be easily ported from one environment to other and requires almost no calibration. Quantitative results are presented with the purpose of encouraging future comparisons among different ground-truth systems. The presented method has shown to be accurate enough to evaluate state-estimation methods and works in real time.

Keywords

Ground Truth Laser 

References

  1. 1.
    Arenas, M., Ruiz-del-Solar, J., Norambuena, S., Cubillos, S.: A Robot Referee for Robot Soccer. In: Iocchi, L., Matsubara, H., Weitzenfeld, A., Zhou, C. (eds.) RoboCup 2008. LNCS (LNAI), vol. 5399, pp. 426–438. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Baltes, J., Anderson, J.: Interpolation Methods for Global Vision Systems. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004. LNCS (LNAI), vol. 3276, pp. 434–442. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Egorova, A., Simon, M., Wiesel, F., Gloye, A., Rojas, R.: Plug and Play: Fast Automatic Geometry and Color Calibration for Cameras Tracking Robots. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004. LNCS (LNAI), vol. 3276, pp. 394–401. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Hayashi, Y., Tohyama, S., Fujiyoshi, H.: Mosaic-Based Global Vision System for Small Size Robot League. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 593–601. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Masutani, Y., Tanaka, Y., Shigeta, T., Miyazaki, F.: Pseudo-local Vision System Using Ceiling Camera for Small Multi-robot Platforms. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS (LNAI), vol. 3020, pp. 510–517. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Naruse, T., Masutani, Y., Mitsunaga, N., Nagasaka, Y., Fujii, T., Watanabe, M., Nakagawa, Y., Naito, O.: SSL-Humanoid RoboCup Soccer Using Humanoid Robots under the Global Vision. In: Ruiz-del-Solar, J., Chown, E., Ploeger, P.G. (eds.) RoboCup 2010. LNCS, vol. 6556, pp. 60–71. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Niemüller, T., Ferrein, A., Eckel, G., Pirro, D., Podbregar, P., Kellner, T., Rath, C., Steinbauer, G.: Providing Ground-Truth Data for the Nao Robot Platform. In: Ruiz-del-Solar, J., Chown, E., Ploeger, P.G. (eds.) RoboCup 2010. LNCS (LNAI), vol. 6556, pp. 133–144. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning). The MIT Press (2005)Google Scholar
  9. 9.
    Röfer, T., Jüngel, M.: Fast and robust edge-based localization in the Sony four-legged robot league (2004)Google Scholar
  10. 10.
    Sheh, R., West, G.: Visual Tracking and Localization of a Small Domestic Robot. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004. LNCS (LNAI), vol. 3276, pp. 410–417. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Ruiz-del-Solar, J., Loncomilla, P., Vallejos, P.A.: An Automated Refereeing and Analysis Tool for the Four-Legged League. In: Lakemeyer, G., Sklar, E., Sorrenti, D.G., Takahashi, T. (eds.) RoboCup 2006. LNCS (LNAI), vol. 4434, pp. 206–218. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Umemura, S., Murakami, K., Naruse, T.: Orientation Extraction and Identification of the Opponent Robots in RoboCup Small-Size League. In: Lakemeyer, G., Sklar, E., Sorrenti, D.G., Takahashi, T. (eds.) RoboCup 2006. LNCS (LNAI), vol. 4434, pp. 395–401. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Zickler, S., Laue, T., Birbach, O., Wongphati, M., Veloso, M.: SSL-Vision: The Shared Vision System for the RoboCup Small Size League. In: Baltes, J., Lagoudakis, M.G., Naruse, T., Ghidary, S.S. (eds.) RoboCup 2009. LNCS (LNAI), vol. 5949, pp. 425–436. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Román Marchant
    • 1
  • Pablo Guerrero
    • 1
  • Javier Ruiz-del-Solar
    • 1
  1. 1.Department of Electrical EngineeringUniversidad de ChileSantiagoChile

Personalised recommendations