Real Time Biped Walking Gait Pattern Generator for a Real Robot

  • Feng Xue
  • Xiaoping Chen
  • Jinsu Liu
  • Daniele Nardi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7416)


The design of a real time and dynamic balanced biped walking gait pattern generator is not trivial due to high control space and inherently unstable motion. Moreover, in the Robocup domain, robots that are able to achieve the goal footstep in a short duration have a great advantage when playing soccer. In this paper, we present a new technique to realize a real time biped walking gait pattern generator on a real robot named Nao. A Zero Moment Point (ZMP) trajectory represented by a cubic polynomial is introduced to connect the goal state (the position and the velocity of the CoG) to the previous one in only one step. To apply the generator on the real robot Nao, we calculate the compensation for two HipRoll joints in a theoretical way by modeling them as elastic joints. The nao of version 3.3 is used in the experiments. The walk is intrinsically omnidirectional. When walking with step duration 180ms, the robot can respond to the high level command in 180ms. The maximum forward speed is around 0.33m/s. The maximum backward speed is around 0.2m/s. The maximum sideways speed is around 0.11m/s. The maximum rotational speed is around 90°/s.


Biped Walking ZMP 3D Inverted Pendulum Elastic Joints 


  1. 1.
    Behnke, S.: Online trajectory generation for omnidirectional biped walking. In: IEEE International Conference on Robotics and Automation (2006)Google Scholar
  2. 2.
    Chestnutt, J., Kuffner, J., Nishiwaki, K., Kagami, S.: Planning biped navigation strategies in complex environments. In: IEEE/RSJ Int. Conf. on Humanoid Robotics, Humanoids 2003, Karlsruhe & Munich, Germany (2003)Google Scholar
  3. 3.
    Czarnetzki, S., Kerner, S., Urbann, O.: Observer-based dynamic walking control for biped robots. Robotics and Autonomous Systems 57(8) (2009)Google Scholar
  4. 4.
    Gouaillier, D., Hugel, V., Blazevic, P., Kilner, C., Monceaux, J., Lafourcade, P., Marnier, B., Serre, J., Maisonnier, B.: Mechatronic design of NAO humanoid. In: IEEE International Conference on Robotics and Automation (2009)Google Scholar
  5. 5.
    Graf, C., Röfer, T.: A closed-loop 3D-LIPM gait for the RoboCup Standard Platform League Humanoid. In: Zhou, C., Pagello, E., Behnke, S., Menegatti, E., Röfer, T., Stone, P. (eds.) Proceedings of the Fourth Workshop on Humanoid Soccer Robots in Conjunction with the 2010 IEEE-RAS International Conference on Humanoid Robots (2010)Google Scholar
  6. 6.
    Graf, C., Härtl, E., Röfer, T., Laue, T.: A robust closed-loop gait for the Standard Platform League Humanoid. In: Proceedings of the 4th Workshop on Humanoid Soccer Robots. A Workshop of the 2009 IEEE-RAS Intl. Conf. on Humanoid Robots (2009)Google Scholar
  7. 7.
    Harada, K., Kajita, S., Kaneko, K., Hirukawa, H.: An analytical method on real-time gait planning for a humanoid robot. Journal of Humanoid Robotics 3(1) (2006)Google Scholar
  8. 8.
    Kajita, S., Kanehiro, F., Kanako, K., Yokoi, K., Hirukawa, H.: The 3D Linear Inverted Pendulum Model: A simple modeling for a biped walking pattern generation. In: IEEE/RSJ Int. Conf. on Intelligent Robots and System, IROS 2001, Hawaii, USA (2001)Google Scholar
  9. 9.
    Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., Hirukawa, H.: Biped walking pattern generation by using preview control of Zero-Moment Point. In: IEEE Int. Conf. on Robotics and Automation, ICRA 2003 (2003)Google Scholar
  10. 10.
    Liu, J., Manuela, V.: Online ZMP sampling search for biped walking planning. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS (2008)Google Scholar
  11. 11.
    Liu, J., Xue, F., Chen, X.: A universal biped walking generator for rough terrain with pattern feasibility checking. International Journal of Humanoid Robotics (to be appeared in 2011)Google Scholar
  12. 12.
    Luca, A.D., Siciliano, B., Zollo, L.: PD control with on-line gravity compensation for robots with elastic joints: theory and experiments. Automatica 41(10) (2005)Google Scholar
  13. 13.
    Spong, M.W.: Modeling and control of elastic joint robots. ASME Journal of Dynamic Systems, Measurement, and Control 109 (1987)Google Scholar
  14. 14.
    Strom, J., Slavov, G., Chown, E.: Omnidirectional Walking Using ZMP and Preview Control for the NAO Humanoid Robot. In: Baltes, J., Lagoudakis, M.G., Naruse, T., Ghidary, S.S. (eds.) RoboCup 2009. LNCS (LNAI), vol. 5949, pp. 378–389. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Vukobratovic, M., Borovac, B.: Zero-Moment Point - thirty five years of its life. International Journal of Humanoid Robotics 1(1), 157–173 (2004)CrossRefGoogle Scholar
  16. 16.
    Xue, F., Chen, X., Liu, J.: Integrated balance control on uneven terrain based on inertial sensors. Submitted to IEEE/RSJ Int. Conf. on Intelligent Robots and System, IROS 2011 (2011)Google Scholar
  17. 17.
    Zollo, L., Siciliano, B., Luca, A.D., Guglielmelli, E., Dari, P.: Compliance control for an anthropomorphic robot with elastic joints: theory and experiment. ASME Transactions: Journal of Dynamic Systems, Measurements, and Control 127(3) (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Feng Xue
    • 1
  • Xiaoping Chen
    • 1
  • Jinsu Liu
    • 1
  • Daniele Nardi
    • 2
  1. 1.Department of Computer Science and TechnologyUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Department of Compute and System ScienceSapienza University of RomaRomaItaly

Personalised recommendations