Advertisement

AnySURF: Flexible Local Features Computation

  • Eran Sadeh-Or
  • Gal A. Kaminka
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7416)

Abstract

Many vision-based tasks for autonomous robotics are based on feature matching algorithms, finding point correspondences between two images. Unfortunately, existing algorithms for such tasks require significant computational resources and are designed under the assumption that they will run to completion and only then return a complete result.

Since partial results—a subset of all features in the image—are often sufficient, we propose in this paper a computationally-flexible algorithm, where results monotonically increase in quality, given additional computation time. The proposed algorithm, coined AnySURF (Anytime SURF), is based on the SURF scale- and rotation-invariant interest point detector and descriptor. We achieve flexibility by re-designing several major steps, mainly the feature search process, allowing results with increasing quality to be accumulated.

We contrast different design choices for AnySURF and evaluate the use of AnySURF in a series of experiments. Results are promising, and show the potential for dynamic anytime performance, robust to the available computation time.

Keywords

Interest Point Humanoid Robot Design Choice Scale Invariant Feature Transform Integral Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    DARPA grand challenge (2007), http://www.darpa.mil/grandchallenge/index.asp
  2. 2.
    Bay, H., Tuytelaars, T., van Gool, L.: SURF: Speeded Up Robust Features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Chekhlov, D., Pupilli, M., Mayol-Cuevas, W., Calway, A.: Real-Time and Robust Monocular SLAM Using Predictive Multi-resolution Descriptors. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Nefian, A., Meenakshisundaram, G., Pascucci, V., Zara, J., Molineros, J., Theisel, H., Malzbender, T. (eds.) ISVC 2006. LNCS, vol. 4292, pp. 276–285. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: MonoSLAM: Real-Time single camera SLAM. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(6), 1052–1067 (2007)CrossRefGoogle Scholar
  5. 5.
    Evans, C.: Notes on the OpenSURF library. Tech. rep., University of Bristol (January 2009)Google Scholar
  6. 6.
    Gossow, D., Decker, P., Paulus, D.: An Evaluation of Open Source SURF Implementations. In: Ruiz-del-Solar, J., Chown, E., Ploeger, P.G. (eds.) RoboCup 2010. LNCS, vol. 6556, pp. 169–179. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press (2004)Google Scholar
  8. 8.
    Ke, Y., Sukthankar, R.: PCA-SIFT: a more distinctive representation for local image descriptors. Null 2, 506–513 (2004)Google Scholar
  9. 9.
    Kovesi, P.D.: MATLAB and Octave functions for computer vision and image processing (2000), http://www.csse.uwa.edu.au/~pk/Research/MatlabFns
  10. 10.
    Lowe, D.G.: Object recognition from local Scale-Invariant features. In: Proceedings of the International Conference on Computer Vision, vol. 2, p. 1150. IEEE (1999)Google Scholar
  11. 11.
    Lowe, D.G.: Distinctive image features from Scale-Invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  12. 12.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(10), 1615–1630 (2005)CrossRefGoogle Scholar
  13. 13.
    Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., van Gool, L.: A comparison of affine region detectors. Int. J. Comput. Vision 65(1-2), 43–72 (2005)CrossRefGoogle Scholar
  14. 14.
    Moravec, H.P.: Visual Mapping by a Robot Rover (1979)Google Scholar
  15. 15.
    Orlinski, A.: Pan-o-matic - automatic control point creator for huginGoogle Scholar
  16. 16.
    Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors: a survey. Found. Trends. Comput. Graph. Vis. 3(3), 177–280 (2008)CrossRefGoogle Scholar
  17. 17.
    Zilberstein, S.: Using anytime algorithms in intelligent systems. AI Magazine 17(3), 73–83 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Eran Sadeh-Or
    • 1
  • Gal A. Kaminka
    • 1
  1. 1.Computer Science DepartmentBar Ilan UniversityIsrael

Personalised recommendations