Ball Interception Behaviour in Robotic Soccer

  • João Cunha
  • Nuno Lau
  • João Rodrigues
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7416)


In robotic soccer the ball is the most crucial factor of the game. It is therefore extremely important for a robot to retrieve it as soon as possible. Thus ball interception is a key behaviour in robotic soccer. However, currently most MSL teams move to the ball position without considering the ball velocity. This often results in inefficient paths described by the robot. This paper presents the CAMBADA solution for a ball interception behaviour based on a uniformly accelerated robot model, where not only the ball velocity is taken into account but also the robot current velocity as well as the robot acceleration, maximum velocity and sensor-action delays are considered. The described work was introduced in the Portuguese robotics open Robótica2009 and RoboCup 2009 and improved the team performance contributing to the first and third places, respectively.


Ball Position Soccer Robot Ball Velocity Interception Point Shared Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Almeida, L., Santos, F., Facchinetti, T., Pedreiras, P., Silva, V., Lopes, L.S.: Coordinating Distributed Autonomous Agents with a Real-Time Database: The CAMBADA Project. In: Aykanat, C., Dayar, T., Körpeoğlu, İ. (eds.) ISCIS 2004. LNCS, vol. 3280, pp. 876–886. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Azevedo, J.L., Cunha, B., Almeida, L.: Hierarchical distributed architectures for autonomous mobile robots: A case study. In: Proc. of the 12th IEEE Conference on Emerging Technologies and Factory Automation, ETFA 2007, pp. 973–980 (2007)Google Scholar
  3. 3.
    Cunha, B., Azevedo, J.L., Lau, N., Almeida, L.: Obtaining the Inverse Distance Map from a Non-SVP Hyperbolic Catadioptric Robotic Vision System. In: Visser, U., Ribeiro, F., Ohashi, T., Dellaert, F. (eds.) RoboCup 2007. LNCS (LNAI), vol. 5001, pp. 417–424. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E.: Robocup: The robot world cup initiative. In: Agents, pp. 340–347 (1997)Google Scholar
  5. 5.
    Lau, N., Lopes, L.S., Corrente, G., Filipe, N., Sequeira, R.: Robot team coordination using dynamic role and positioning assignment and role based setplays. Mechatronics (2010) (in press)Google Scholar
  6. 6.
    Lauer, M., Lange, S., Riedmiller, M.: Calculating the Perfect Match: An Efficient and Accurate Approach for Robot Self-localization. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 142–153. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Lauer, M., Lange, S., Riedmiller, M.A.: Modeling Moving Objects in a Dynamically Changing Robot Application. In: Furbach, U. (ed.) KI 2005. LNCS (LNAI), vol. 3698, pp. 291–303. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Müller, H., Lauer, M., Hafner, R., Lange, S., Merke, A., Riedmiller, M.: Making a Robot Learn to Play Soccer Using Reward and Punishment. In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI 2007. LNCS (LNAI), vol. 4667, pp. 220–234. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Neves, A.J.R., Martins, D.A., Pinho, A.J.: A hybrid vision system for soccer robots using radial search lines. In: Proc. of the 8th Conference on Autonomous Robot Systems and Competitions, Portuguese Robotics Open, ROBOTICA 2008, Aveiro, Portugal, April 2008, pp. 51–55 (2008)Google Scholar
  10. 10.
    Neves, A.J.R., Corrente, G.A., Pinho, A.J.: An Omnidirectional Vision System for Soccer Robots. In: Neves, J., Santos, M.F., Machado, J.M. (eds.) EPIA 2007. LNCS (LNAI), vol. 4874, pp. 499–507. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Paulo Pedreiras, L.A.: Task Management for Soft Real-Time Applications Based on General Purpose Operating Systems. In: Robotic Soccer, pp. 243–252. I-Tech Education and Publishing (December 2007)Google Scholar
  12. 12.
    Riley, P., Stone, P., McAllester, D.A., Veloso, M.M.: ATT-CMUnited-2000: Third Place Finisher in the Robocup-2000 Simulator League. In: Stone, P., Balch, T., Kraetzschmar, G.K. (eds.) RoboCup 2000. LNCS (LNAI), vol. 2019, pp. 489–492. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Santos, F., Almeida, L., Pedreiras, P., Lopes, L.S., Facchinetti, T.: An Adaptive TDMA Protocol for Soft Real-Time Wireless Communication among Mobile Autonomous Agents. In: Proc. of the Int. Workshop on Architecture for Cooperative Embedded Real-Time Systems, WACERTS 2004 (2004)Google Scholar
  14. 14.
    Santos, F., Corrente, G., Almeida, L., Lau, N., Lopes, L.: Selfconfiguration of an Adaptive TDMA wireless communication protocol for teams of mobile robots. In: Proc. of the 13th Portuguese Conference on Artificial Intelligence, EPIA 2007 (2007)Google Scholar
  15. 15.
    Silva, J., Lau, N., Neves, A.J.R., Rodrigues, J.M.O.S., Azevedo, J.L.: World modeling on an MSL robotic soccer team. Mechatronics 21(2), 411–422 (2011)CrossRefGoogle Scholar
  16. 16.
    Stolzenburg, F., Obst, O., Murray, J.: Qualitative Velocity and Ball Interception. In: Jarke, M., Koehler, J., Lakemeyer, G. (eds.) KI 2002. LNCS (LNAI), vol. 2479, pp. 283–298. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    van der Vecht, B., Lima, P.U.: Formulation and Implementation of Relational Behaviours for Multi-robot Cooperative Systems. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004. LNCS (LNAI), vol. 3276, pp. 516–523. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • João Cunha
    • 1
  • Nuno Lau
    • 1
  • João Rodrigues
    • 1
  1. 1.Universidade de AveiroPortugal

Personalised recommendations