Advertisement

Introduction

  • Marc Hutchby
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The field of catalysis is of great importance not only to chemists but to society in general. Ranging from enzymes in biological systems to the catalytic converters in the automobile industry, reactions occurring through catalytic procedures are ubiquitous.

Keywords

High Occupied Molecular Orbital Lower Unoccupied Molecular Orbital Nucleophilic Attack Reductive Elimination Directing Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Sigma Aldrich 2011Google Scholar
  2. 2.
    Li S, Lin Y, Cao J, Zhang SJ (2007) Org Chem 72:4067–4072Google Scholar
  3. 3.
    Nishikata T, Abela AR, Lipshutz BH (2010) Angew Chem Int Ed 49:781–784Google Scholar
  4. 4.
    Bullock KM, Mitchell MB, Toczko JF (2008) Org Process Res Dev 12:896–899Google Scholar
  5. 5.
    Mee SPH, Lee V, Baldwin JE (2004) Angew Chem Int Ed 43:1132–1136Google Scholar
  6. 6.
    So CM, Yeung CC, Lau CP, Kwong FYJ (2008) Org Chem 73:7803–7806Google Scholar
  7. 7.
    Shen Q, Hartwig JF (2008) Org Lett 10:4109–4112Google Scholar
  8. 8.
    Kantam ML, Srinivas P, Yadav J, Likhar PR, Bhargava SJ (2009) Org Chem 74:4882–4885Google Scholar
  9. 9.
    Cui X, Li J, Zhang Z-P, Fu Y, Liu L, Guo Q-XJ (2007) Org Chem 72:9342–9345Google Scholar
  10. 10.
    Mizoroki T, Mori K, Ozaki AB (1971) Chem Soc Jpn 44:581Google Scholar
  11. 11.
    Heck RF, Nolley JPJ (1972) Org Chem 37:2320–2322Google Scholar
  12. 12.
    Powell DA, Fu GCJ (2004) Am Chem Soc 126:7788–7789Google Scholar
  13. 13.
    Milne JE, Buchwald SLJ (2004) Am Chem Soc 126:13028–13032Google Scholar
  14. 14.
    Li P, Wang L, Li H (2005) Tetrahedron 61:8633–8640Google Scholar
  15. 15.
    Li J-H, Liang Y, Wang D-P, Liu W-J, Xie Y-X, Yin D-LJ (2005) Org Chem 70:2832–2834Google Scholar
  16. 16.
    Meulemans TM, Kiers NH, Feringa BL, van Leeuwen PWNM (1994) Tetrahedron Lett 35:455–458Google Scholar
  17. 17.
    Popp BV, Thorman JL, Stahl SSJ (2006) Mol Catal A-Chem 251:2–7Google Scholar
  18. 18.
    Bar GLJ, Lloyd-Jones GC, Booker-Milburn KIJ (2005) Am Chem Soc 127:7308–7309Google Scholar
  19. 19.
    Itahara TJ (1985) Org Chem 50:5546–5550Google Scholar
  20. 20.
    Tanaka D, Romeril SP, Myers AGJ (2005) Am Chem Soc 127:10323–10333Google Scholar
  21. 21.
    Grimster NP, Gauntlett C, Godfrey CRA, Gaunt MJ (2005) Angew Chem Int Ed 44:3125–3129Google Scholar
  22. 22.
    Åakermark B, Larsson EM, Oslob JDJ (1994) Org Chem 59:5729–5733Google Scholar
  23. 23.
    Dick AR, Hull KL, Sanford MSJ (2004) Am Chem Soc 126:2300–2301Google Scholar
  24. 24.
    Desai LV, Hull KL, Sanford MSJ (2004) Am Chem Soc 126:9542–9543Google Scholar
  25. 25.
    Deprez NR, Kalyani D, Krause A, Sanford MSJ (2006) Am Chem Soc 128:4972–4973Google Scholar
  26. 26.
    Deprez NR, Sanford MS (2007) Inorg Chem 46:1924–1935Google Scholar
  27. 27.
    Desai LV, Sanford MS (2007) Angew Chem Int Ed 46:5737–5740Google Scholar
  28. 28.
    Neufeldt SR, Sanford MS (2009) Org Lett 12:532–535Google Scholar
  29. 29.
    Daugulis O, Zaitsev VG (2005) Angew Chem Int Ed 44:4046–4048Google Scholar
  30. 30.
    Bedford RB, Webster RL, Mitchell CJ (2009) Org Biomol Chem 7:4853–4857Google Scholar
  31. 31.
    Alexanian EJ, Lee C, Sorensen EJJ (2005) Am Chem Soc 127:7690–7691Google Scholar
  32. 32.
    Smidt J, Hafner W, Jira R, Sieber R, Sedlmeier J, Sabel A (1962) Angew Chem Int Ed 1:80–88Google Scholar
  33. 33.
    Keith JA, Nielsen RJ, Oxgaard J, Goddard WAJ (2007) Am Chem Soc 129:12342–12343Google Scholar
  34. 34.
    Anderson BJ, Keith JA, Sigman MSJ (2010) Am Chem Soc 132:11872–11874Google Scholar
  35. 35.
    Mitsudome T, Mizumoto K, Mizugaki T, Jitsukawa K, Kaneda K (2010) Angew Chem Int Ed 49:1238–1240Google Scholar
  36. 36.
    Keith JA, Henry PM (2009) Angew Chem Int Ed 48:9038–9049Google Scholar
  37. 37.
    Ito Y, Aoyama H, Hirao T, Mochizuki A, Saegusa TJ (1979) Am Chem Soc 101:494–496Google Scholar
  38. 38.
    Pei T, Wang X, Widenhoefer RAJ (2002) Am Chem Soc 125:648–649Google Scholar
  39. 39.
    Lu BZ, Zhao W, Wei H-X, Dufour M, Farina V, Senanayake CH (2006) Org Lett 8:3271–3274Google Scholar
  40. 40.
    Yue D, Yao T, Larock RCJ (2005) Org Chem 71:62–69Google Scholar
  41. 41.
    Åkermark B, Bäckvall JE, Hegedus LS, Zetterberg K, Siirala-Hansén K, Sjöberg KJ (1974) Organomet Chem 72:127–138Google Scholar
  42. 42.
    Bäckvall J-E (1975) Tetrahedron Lett 16:2225–2228Google Scholar
  43. 43.
    Bäckvall J-E (1978) Tetrahedron Lett 19:163–166Google Scholar
  44. 44.
    Backvall J-E (1977) J Chem Soc Chem Comm 27:413–414Google Scholar
  45. 45.
    Hegedus LS, Siirala-Hansen KJ (1975) Am Chem Soc 97:1184–1188Google Scholar
  46. 46.
    Tsuji J (1997) Palladium reagents and catalysts.Wiley, Chichester, p 301Google Scholar
  47. 47.
    Kotov V, Scarborough CC, Stahl SS (2007) Inorg Chem 46:1910–1923Google Scholar
  48. 48.
    Barsacchi M, Consiglio G, Medici L, Petrucci G, Suter UW (1991) Angew Chem Int Ed 30:989–991Google Scholar
  49. 49.
    Tsuji J, Morikawa M, Kiji JJ (1964) Am Chem Soc 86:4851–4853Google Scholar
  50. 50.
    Stille JK, James DEJ (1976) Organomet Chem 108:401–408Google Scholar
  51. 51.
    Stille JK, Divakaruni RJ (1979) Org Chem 44:3474–3482Google Scholar
  52. 52.
    McCormick M, Monahan R, Soria J, Goldsmith D, Liotta DJ (1989) Org Chem 54:4485–4487Google Scholar
  53. 53.
    Fenton DM, Steinwand PJJ (1974) Org Chem 39:701–704Google Scholar
  54. 54.
    Giannoccaro PJ (1987) Organomet Chem 336:271–278Google Scholar
  55. 55.
    Chandrasekhar S, Narsihmulu C, Sultana SS, Reddy NR (2002) Org Lett 4:4399–4401Google Scholar
  56. 56.
    Boele MDK, van Strijdonck GPF, de Vries AHM, Kamer PCJ, de Vries JG, van Leeuwen PWNM (2002) J Am Chem Soc 124:1586–1587Google Scholar
  57. 57.
    Fujita K-I, Nonogawa M, Yamaguchi R (2004) Chem Commun 1926–1927Google Scholar
  58. 58.
    Oi S, Aizawa E, Ogino Y, Inoue YJ (2005) Org Chem 70:3113–3119Google Scholar
  59. 59.
    Alberico D, Scott ME, Lautens M (2007) Chem Rev 107:174–238Google Scholar
  60. 60.
    Haffemayer B, Gulias M, Gaunt MJ (2010) Chem Sci 2:312–315Google Scholar
  61. 61.
    Kalyani D, Satterfield AD, Sanford MSJ (2010) Am Chem Soc 132:8419–8427Google Scholar
  62. 62.
    Vermeulen NA, Delcamp JH, White MCJ (2010) Am Chem Soc 132:11323–11328Google Scholar
  63. 63.
    Iida H, Yuasa Y, Kibayashi CJ (1980) Org Chem 45:2938–2942Google Scholar
  64. 64.
    Dick AR, Kampf JW, Sanford MSJ (2005) Am Chem Soc 127:12790–12791Google Scholar
  65. 65.
    Kametani Y, Satoh T, Miura M, Nomura M (2000) Tetrahedron Lett 41:2655–2658Google Scholar
  66. 66.
    Neumann JJ, Rakshit S, Dröge T, Glorius F (2009) Angew Chem Int Ed 48:6892–6895Google Scholar
  67. 67.
    Chen MS, Prabagaran N, Labenz NA, White MCJ (2005) Am Chem Soc 127:6970–6971Google Scholar
  68. 68.
    Mukhopadhyay S, Rothenberg G, Gitis D, Sasson YJ (2000) Org Chem 65:3107–3110Google Scholar
  69. 69.
    Satoh T, Miura M (2007) Chem Lett 36:200–205Google Scholar
  70. 70.
    Wasa M, Yu J-Q (2010) Tetrahedron 66:4811–4815Google Scholar
  71. 71.
    Gürbüz N, Özdemir I, Çetinkaya B (2005) Tetrahedron Lett 46:2273–2277Google Scholar
  72. 72.
    Wan X, Ma Z, Li B, Zhang K, Cao S, Zhang S, Shi ZJ (2006) Am Chem Soc 128:7416–7417Google Scholar
  73. 73.
    Kalyani D, Deprez NR, Desai LV, Sanford MSJ (2005) Am Chem Soc 127:7330–7331Google Scholar
  74. 74.
    Racowski JM, Dick AR, Sanford MSJ (2009) Am Chem Soc 131:10974–10983Google Scholar
  75. 75.
    Ryabov AD (1990) Chem Rev 90:403–424Google Scholar
  76. 76.
    Shilov AE, Shul’pin GB (1997) Chem Rev 97:2879–2932Google Scholar
  77. 77.
    Davies DL, Donald SMA, MacGregor SAJ (2005) Am Chem Soc 127:13754–13755Google Scholar
  78. 78.
    Ryabov AD, Sakodinskaya IK, Yatsimirsky AK (1985) J Chem Soc Dalton 12:2629–2638Google Scholar
  79. 79.
    Lapointe D, Fagnou K (2010) Chem Lett 39:1118–1126Google Scholar
  80. 80.
    Orito K, Horibata A, Nakamura T, Ushito H, Nagasaki H, Yuguchi M, Yamashita S, Tokuda MJ (2004) Am Chem Soc 126:14342–14343Google Scholar
  81. 81.
    Giri R, Yu JQJ (2008) Am Chem Soc 130:14082–14084Google Scholar
  82. 82.
    Whisler MC, MacNeil S, Snieckus V, Beak P (2004) Angew Chem Int Ed 43:2206–2225Google Scholar
  83. 83.
    Houlden CE, Bailey CD, Ford JG, Gagné MR, Lloyd-Jones GC, Booker- Milburn KI (2008) J Am Chem Soc 130:10066–10067Google Scholar
  84. 84.
    Dixon NE, Gazzola C, Blakeley RL, Zerner BJ (1975) Am Chem Soc 97:4131–4133Google Scholar
  85. 85.
    Jabri E, Carr MB, Hausinger RP, Karplus PA (1995) Science 268:998–1004Google Scholar
  86. 86.
    Maslak P, Sczepanski JJ, Parvez MJ (1991) Am Chem Soc 113:1062–1063Google Scholar
  87. 87.
    Fairlie DP, Jackson WG, McLaughlin GM (1989) Inorg Chem 28:1983–1989Google Scholar
  88. 88.
    Blakeley RL, Treston A, Andrews RK, Zerner BJ (1982) Am Chem Soc 104:612–614Google Scholar
  89. 89.
    Kolodzieji AF (1991) Prog Inorg Chem 41:493Google Scholar
  90. 90.
    Osborn HMI, Williams NAO (2004) Org Lett 6:3111–3113Google Scholar
  91. 91.
    Curtis NJ, Dixon NE, Sargeson AMJ (1983) Am Chem Soc 105:5347–5353Google Scholar
  92. 92.
    Watson AA, Fairlie DP (1995) Inorg Chem 34:3087–3092Google Scholar
  93. 93.
    Dixon NE, Fairlie DP, Jackson WG, Sargeson AM (1983) Inorg Chem 22:4038–4046Google Scholar
  94. 94.
    Kaminskaia NV, Kostic NM (1997) Inorg Chem 36:5917–5926Google Scholar
  95. 95.
    Kaminskaia NV, Kostic NM (1998) Inorg Chem 37:4302–4312Google Scholar
  96. 96.
    Wang J, Li Q, Dong W, Kang M, Wang X, Peng S (2004) Appl Catal A-Gen 261:191–197Google Scholar
  97. 97.
    Shivarkar AB, Gupte SP, Chaudhari RVJ (2004) Mol Catal A-Chem 223:85–92Google Scholar
  98. 98.
    Clayden J, Dufour J, Grainger DM, Helliwell MJ (2007) Am Chem Soc 129:7488–7489Google Scholar
  99. 99.
    Akester J, Cui J, Fraenkel GJ (1997) Org Chem 62:431–434Google Scholar
  100. 100.
    Lukeš R (1938) Collect Czech Chem C 10:148–152Google Scholar
  101. 101.
    Szostak M (2009) Aubé. J Org Lett 11:3878–3881Google Scholar
  102. 102.
    Dunitz JD, Winkler FK (1975) Acta Crystallogr B31:251–263Google Scholar
  103. 103.
    Kirby AJ, Komarov IV, Feeder NJ (2001) Chem Soc Perkin Trans 2:522–529Google Scholar
  104. 104.
    Kirby AJ, Komarov IV, Feeder NJ (1998) Am Chem Soc 120:7101–7102Google Scholar
  105. 105.
    Bennet AJ, Wang QP, Slebockatilk H, Somayaji V, Brown RS, Santarsiero BDJ (1990) Am Chem Soc 112:6383–6385Google Scholar
  106. 106.
    Clayden J, Moran WJ (2006) Angew Chem Int Ed 45:7118–7120Google Scholar
  107. 107.
    Kirby AJ, Komarov IV, Wothers PD, Feeder N (1998) Angew Chem Int Ed 37:785–786Google Scholar
  108. 108.
    Szostak M, Yao L, Aubé J (2009) J Org Chem 74:1869–1875Google Scholar
  109. 109.
    Lei Y, Wrobleski AD, Golden JE, Powell DR, Aubé JJ (2005) Am Chem Soc 127:4552–4553Google Scholar
  110. 110.
    Yao L, Aubé JJ (2007) Am Chem Soc 129:2766–2767Google Scholar
  111. 111.
    Szostak M, Aubé J (2009) Chem Commun 14:7122–7124Google Scholar
  112. 112.
    Szostak M, Aubé J (2010) Org Biomol Chem 9:27–35Google Scholar
  113. 113.
    Shea KJ (1980) Tetrahedron 36:1683–1715Google Scholar
  114. 114.
    Yakhontov LN, Rubsitov MV (1957) J Gen Chem USSR 27:83–87Google Scholar
  115. 115.
    von Pracejus H, Kehlen M, Kehlen H, Matschiner H (1965) Tetrahedron 21:2257–2270Google Scholar
  116. 116.
    Somayaji V, Brown RSJ (1986) Org Chem 51:2676–2686Google Scholar
  117. 117.
    Tani K, Stoltz BM (2006) Nature 441:731–734Google Scholar
  118. 118.
    Yamada S (1993) Angew Chem Int Ed 32:1083–1085Google Scholar
  119. 119.
    Yamada S (1992) Tetrahedron Lett 33:2171–2174Google Scholar
  120. 120.
    Clayden J, Foricher YJY, Lam HK (2002) Chem Commun 2138–2139Google Scholar
  121. 121.
    Lunazzi L, Macciantelli D, Tassi D, Dondoni AJ (1980) Chem Soc Perkin Trans 2:717–723Google Scholar
  122. 122.
    Stewart WE, Siddall TH (1970) Chem Rev 70:517–551Google Scholar
  123. 123.
    Gillson A-ME, Glover SA, Tucker DJ, Turner P (2003) Org Biomol Chem 1:3430–3437Google Scholar
  124. 124.
    Campbell JJ, Glover SA, Hammond GP, Rowbottom CAJ (1991) Chem Soc Perkin Trans 2:2067–2079Google Scholar
  125. 125.
    Glover SA, Mo G, Rauk A, Tucker DJ, Turner P (1999) J Chem Soc Perkin Trans 2:2053–2058Google Scholar
  126. 126.
    Glover SA, Mo GJ (2002) Chem Soc Perkin Trans 2:1728–1739Google Scholar
  127. 127.
    Adams M, Glover SA, Tucker DJ (2001) Unpublished ResultsGoogle Scholar
  128. 128.
    Staudinger H (1905) Chem Ber 38:1735–1739Google Scholar
  129. 129.
    Cossio FP, Ugalde JM, Lopez X, Lecea B, Palomo CJ (1993) Am Chem Soc 115:995–1004Google Scholar
  130. 130.
    Walsh ADJ (1946) Am Chem Soc 68:2408–2409Google Scholar
  131. 131.
    Wilsmore NTM (1907) J Chem Soc Perkin Trans 91:1938–1941Google Scholar
  132. 132.
    Allred EL, Grant DM, Goodlett WJ (1965) Am Chem Soc 87:673–674Google Scholar
  133. 133.
    Tidwell TT (2005) Ketenes II. Wiley, HobokenGoogle Scholar
  134. 134.
    Clemens RJ (1986) Chem Rev 86:241–318Google Scholar
  135. 135.
    Barteau MA (1996) Chem Rev 96:1413–1430Google Scholar
  136. 136.
    Williams A, Douglas KT (1975) Chem Rev 75:627–649Google Scholar
  137. 137.
    Abaecherli C, Miller RJ (1995) Encyclopedia of chemical technology. Wiley, New YorkGoogle Scholar
  138. 138.
    Krishnaswamy D, Bhawal BM, Deshmukh ARAS (2000) Tetrahedron Lett 41:417–419Google Scholar
  139. 139.
    Nahmany M, Melman A (2001) Org Lett 3:3733–3735Google Scholar
  140. 140.
    Inoue M, Bruice TCJ (1983) Org Chem 48:3559–3561Google Scholar
  141. 141.
    Holmquist B, Bruice TCJ (1969) Am Chem Soc 91:3003–3009Google Scholar
  142. 142.
    Pratt RF, Bruice TCJ (1970) Am Chem Soc 92:5956–5964Google Scholar
  143. 143.
    Wilsmore NTMJ (1907) Chem Soc 91:1938–1941Google Scholar
  144. 144.
    Staudinger H, Klever HW (1906) Chem Ber 39:946–950Google Scholar
  145. 145.
    Staudinger H (1907) Chem Ber 40:115–118Google Scholar
  146. 146.
    Staudinger H (1907) Liebigs Ann 356:51–123Google Scholar
  147. 147.
    Snider BB (1988) Chem Rev 88:793–811Google Scholar
  148. 148.
    Baigrie LM, Lenoir D, Seikaly HR, Tidwell TTJ (1985) Org Chem 50:2105–2109Google Scholar
  149. 149.
    Dalgard JE, Rychnovsky SDJ (2004) Am Chem Soc 126:15662–15663Google Scholar
  150. 150.
    de Lucas NC, Netto-Ferreira JC, Andraos J, Scaiano JCJ (2001) Org Chem 66:5016–5021Google Scholar
  151. 151.
    Frey J, Rappoport ZJ (1997) Org Chem 62:8372–8386Google Scholar
  152. 152.
    Dillon JL, Gao Q, Dillon EA, Adams N (1997) Tetrahedron Lett 38:2231–2234Google Scholar
  153. 153.
    Jourdain F, Pommelet JC (1994) Tetrahedron Lett 35:1545–1548Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Thomas Graham HouseRoyal Society of ChemistryCambridgeUK

Personalised recommendations