Introduction to the Wittig Reaction and Discussion of the Mechanism

  • Peter A. Byrne
Part of the Springer Theses book series (Springer Theses)


The Wittig reaction [1] is perhaps the most commonly used method for the synthesis of alkenes. Several excellent reviews on the topic have previously been written [2–5]. The reaction (see Scheme 1.1) occurs between a carbonyl compound (aldehyde or ketone in general, 2) and a phosphonium ylide (1). The latter species is a carbanion stabilised by an adjacent phosphorus substituted with three carbons, giving alkene (3) and phosphine oxide (4) as the by-product. The ylide can be represented by resonance structures 1a (fully ionic ylide form) and 1b (ylene form), which show between them the ionic character of the P–C bond and the contribution to the stabilisation of the carbanion by phosphorus.


Phosphine Oxide Steric Interaction Kinetic Control Phosphonium Salt Wittig Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Wittig G, Geissler G (1953) Justus Liebigs Ann Chem 580:44CrossRefGoogle Scholar
  2. 2.
    Maryanoff BE, Reitz AB (1989) Chem Rev 89:863CrossRefGoogle Scholar
  3. 3.
    Johnson AW (1993) Ylides and Imines of Phosphorus. Wiley; New York, Chapters 8 and 9; pp 221–305Google Scholar
  4. 4.
    Vedejs E, Peterson MJ (1994) In: Eliel EL, Wilen SH (eds) Topics in Stereochemistry, vol 21. Wiley: New YorkGoogle Scholar
  5. 5.
    Vedejs E Peterson MJ (1996) In: Snieckus V (ed) Advances in carbanion chemistry, vol 2. JAI, GreenwichGoogle Scholar
  6. 6.
    Dobado JA, Martínez-García H, Molina J, Sundberg RM (2000) J Am Chem Soc 122:1144CrossRefGoogle Scholar
  7. 7.
    Yufit DS, Howard JAK, Davidson MG (2000) J Chem Soc Perkin Trans 2:249Google Scholar
  8. 8.
    Gilheany DG (1994) Chem Rev 94:1339CrossRefGoogle Scholar
  9. 9.
    Leyssens T, Peeters D (2008) J Org Chem 73:2725CrossRefGoogle Scholar
  10. 10.
    Dobado JA, Martínez-García H, Molina J, Sundberg RM (1998) J Am Chem Soc 120:8461CrossRefGoogle Scholar
  11. 11.
    Chesnut DB (2003) J Phys Chem A 107:4307CrossRefGoogle Scholar
  12. 12.
    Kocher N, Leusser Murso A, Stalke D (2004) Chem Eur J 10:3622Google Scholar
  13. 13.
    Johnson AW (1993) Ylides and imines of phosphorus. Wiley, New York, Chapter 10, pp 307–358Google Scholar
  14. 14.
    Aggarwal VK, Fulton JR, Sheldon CG, de Vicente J (2003) J Am Chem Soc 125:6034 Google Scholar
  15. 15.
    Liu D-N, Tian SK (2009) Chem Eur J 15:4538CrossRefGoogle Scholar
  16. 16.
    Zhou R, Wang C, Song H, He Z (2010) Org Lett 12:976Google Scholar
  17. 17.
    Fan R-H, Hou X-L, Dai L-X (2004) J Org Chem 69:689CrossRefGoogle Scholar
  18. 18.
    Lebel H, Pacquet V, Proulx C (2001) Angew Chem Int Ed 40:2887CrossRefGoogle Scholar
  19. 19.
    Ramazani A, Kazemizadeh AR, Ahmadi E, Noshiranzadeh N, Souldozi A (2008) Curr Org Chem 12:59CrossRefGoogle Scholar
  20. 20.
    Schwartz BD, Williams CM, Anders E, Bernhardt PV (2008) Tetrahedron 64:6482CrossRefGoogle Scholar
  21. 21.
    McNulty J, Keskar K (2008) Tetrahedron Lett 49:7054CrossRefGoogle Scholar
  22. 22.
    Oh JS, Kim BH, Kim YG (2004) Tetrahedron Lett 45:3925Google Scholar
  23. 23.
    Appel M, Blaurock S, Berger S (2002) Eur J Org Chem 1143Google Scholar
  24. 24.
    Wang ZG, Zhang GT, Guzei I, Verkade JG (2001) J Org Chem 61:3521CrossRefGoogle Scholar
  25. 25.
    Nishimura Y, Shiraishi T, Yamaguchi M (2008) Tetrahedron Lett 49:3492CrossRefGoogle Scholar
  26. 26.
    Bera R, Dhananjaya G, Singh SN, Kumar R, Mukkanti K, Pal M (2009) Tetrahedron 65:1300–1305: describes the use of microwave conditions and is a good leading reference to other variationsGoogle Scholar
  27. 27.
    “On” or “in” water: Tiwari S, Kumar A (2008) Chem Commun 4445–4447; Wu JL, Li D, Zhang D (2005) Synth Comm 2543–2551; see also [28]; phase-transfer conditions: Pascariu A, Ilia G, Bora A, Iliescu S, Popa A, Dehelean G, Pacureanu L (2003) Central Eur J Chem 1:491–534; Moussaoui Y, Said K, Ben Salem R (2006) ARKIVOC, Part (xii):1–22; in a ball mill: Balema VP, Wiench JW, Pruski M, Pecharsky VK (2002) J Am Chem Soc 124:6244–6245; ultrasound assisted: Wu LQ, Yang CG, Yang LM, Yang LJ (2009) J Chem Res (S) 183–185; green Wittig reactions: Nguyen KC, Weizman H (2007) J Chem Ed 84:119–121; Martin E, Kellen-Yuen C (2007) J Chem Ed 84:2004–2006Google Scholar
  28. 28.
    El-Batta A, Jiang CC, Zhao W, Anness R, Cooksy AL, Bergdahl M (2007) J Org Chem 72:5244Google Scholar
  29. 29.
    McNulty J, Das P (2009) Eur J Org Chem 4031Google Scholar
  30. 30.
    Orsini F, Sello G, Fumagalli T (2006) Synlett 1717Google Scholar
  31. 31.
    Li CY, Zhu BH, Ye LW, Jing Q, Sun XL, Tang Y, Shen Q (2007) Tetrahedron 63:8046. Enanatioselective Wittig reactions of chiral ylides with ketenes to give allenes, including one pot reactions involving in situ generation of ylide from phosphineGoogle Scholar
  32. 32.
    Xu S, Zou W, Wu G, Song H, He Z (2010) Org Lett 12:3556CrossRefGoogle Scholar
  33. 33.
    Wu J, Yue C (2006) Synth Commun 36:2939CrossRefGoogle Scholar
  34. 34.
    Choudary BM, Mahendar K, Kantam ML, Ranganath KVS, Athar T (2006) Adv Synth Catal 348:1977CrossRefGoogle Scholar
  35. 35.
    Lee EY, Kim Y, Lee JS, Park J (2009) Eur J Org Chem, 2943Google Scholar
  36. 36.
    Okada H, Mori T, Saikawa Y, Nakata M (2009) Tetrahedron Lett 50:1276CrossRefGoogle Scholar
  37. 37.
    Wiktelius D, Luthman K (2007) Org Biomol Chem 5:603CrossRefGoogle Scholar
  38. 38.
    Molander GA, Oliveira RA (2008) Tetrahedron Lett 49:1266CrossRefGoogle Scholar
  39. 39.
    Rothman JH (2007) J Org Chem 72:3945CrossRefGoogle Scholar
  40. 40.
    Hisler K, Tripoli R, Murphy JA (2006) Tetrahedron Lett 47:6293CrossRefGoogle Scholar
  41. 41.
    Ye L-W, Han X, Sun X-L, Tang Y (2008) Tetrahedron 64:8149CrossRefGoogle Scholar
  42. 42.
    Feist H, Langer P (2008) Synthesis 24:3877Google Scholar
  43. 43.
    O’Brien CJ, Tellez JL, Nixon ZS, Kang LJ, Carter AL, Kunkel SR, Przeworski KC, Chass GC (2009) Angew Chem Int Ed 48: 6836. See also Fairlamb IJS (2009) ChemSusChem 2:1021 for a review on the topic of the phosphine-catalysed Wittig reactionGoogle Scholar
  44. 44.
    Appel R, Loos R, Mayr H (2009) J Am Chem Soc 131:714Google Scholar
  45. 45.
    Ghosh A, Chakratborty I, Adarsh NN, Lahiri S (2010) Tetrahedron 66:164CrossRefGoogle Scholar
  46. 46.
    Wang ZG, Zhang GT, Guzei I, Verkade JG (2001) J Org Chem 61:3521CrossRefGoogle Scholar
  47. 47.
    Nishimura Y, Shiraishi T, Yamaguchi M (2008) Tetrahedron Lett 49:3492CrossRefGoogle Scholar
  48. 48.
    Robiette R, Richardson J, Aggarwal VK, Harvey JN (2005) J Am Chem Soc 127:13468CrossRefGoogle Scholar
  49. 49.
    Robiette R, Richardson J, Aggarwal VK, Harvey JN (2006) J Am Chem Soc 128:2394CrossRefGoogle Scholar
  50. 50.
    Harvey JN (2010) Faraday Discuss 145:487CrossRefGoogle Scholar
  51. 51.
    Fu Y, Wang H-J, Chong S-S, Guo Q-X, Liu L (2009) J Org Chem 74:810CrossRefGoogle Scholar
  52. 52.
    Tosic O, Mattay J (2011) Eur J Org Chem 371Google Scholar
  53. 53.
    Hong B-C, Nimje RY, Lin C-W, Liao J-H (2011) Org Lett 13:1278CrossRefGoogle Scholar
  54. 54.
    Hodgson DM, Arif T (2011) Chem Commun 47:2685CrossRefGoogle Scholar
  55. 55.
    Lynch JE, Zanatta SD, White JM, Rizzacasa MA (2011) Chem Eur J 17:297Google Scholar
  56. 56.
    Dong D-J, Li Y, Wang J-Q, Tian S-K (2011) Chem Commun 47:2158CrossRefGoogle Scholar
  57. 57.
    Dong D-J, Li HH, Tian S-K (2010) J Am Chem Soc 132:5018CrossRefGoogle Scholar
  58. 58.
    Fang F, Li Y, Tian S-K (2011) Eur J Org Chem 1084Google Scholar
  59. 59.
    Vedejs E, Marth CF (1987) Tetrahedron Lett 28:3445Google Scholar
  60. 60.
    Vedejs E, Fleck T (1989) J Am Chem Soc 111:5861CrossRefGoogle Scholar
  61. 61.
    Wittig G, Schöllkopf U (1954) Chem Ber 87:1318CrossRefGoogle Scholar
  62. 62.
    Seth M, Senn HM, Ziegler HM (2005) J Phys Chem A 109:5136Google Scholar
  63. 63.
    Wittig G, Haag A (1963) Chem Ber 96:1535CrossRefGoogle Scholar
  64. 64.
    Schlosser M, Christmann KF (1967) Liebigs Ann Chem 708:1CrossRefGoogle Scholar
  65. 65.
    Vedejs E, Meier GP, Snoble KAJ (1981) J Am Chem Soc 103:2823CrossRefGoogle Scholar
  66. 66.
    Wittig G, Haag W (1954) Chem Ber 88:1654CrossRefGoogle Scholar
  67. 67.
    Speziale AJ, Bissing DE (1963) J Am Chem Soc 85:3878CrossRefGoogle Scholar
  68. 68.
    Jones ME, Trippett S (1966) J Chem Soc (C) 1090Google Scholar
  69. 69.
    Vedejs E, Marth CF, Ruggeri R (1988) J Am Chem Soc 110:3940CrossRefGoogle Scholar
  70. 70.
    Maryanoff BE, Reitz AB, Mutter MS, Inners RR, Almond HR Jr, Whittle RR, Olofson RA (1986) J Am Chem Soc 108:7664CrossRefGoogle Scholar
  71. 71.
    Reitz AB, Mutter MS, Maryanoff BE (1873) J Am Chem Soc 1984:106Google Scholar
  72. 72.
    Vedejs E, Marth CF (1990) J Am Chem Soc 112:3905CrossRefGoogle Scholar
  73. 73.
    Bergelson LD, Shemyakin MM (1963) Tetrahedron 19:149CrossRefGoogle Scholar
  74. 74.
    Schneider WP (1969) J Chem Soc Chem Commun 785Google Scholar
  75. 75.
    Schweizer EE, Crouse DM, Minami T, Wehman A (1971) J Chem Soc Chem Commun 1000Google Scholar
  76. 76.
    Blade-Font A, Vanderwerf CA, McEwen WE (1960) J Am Chem Soc 82:2396CrossRefGoogle Scholar
  77. 77.
    Smith DH, Trippett S (1972) J Chem Soc Chem Commun 191Google Scholar
  78. 78.
    Olah GA, Krishnamurthy VV (1982) J Am Chem Soc 104:3987CrossRefGoogle Scholar
  79. 79.
    Yamataka H, Nagareda K, Hanafusa T, Nagase S (1989) Tetrahedron Lett 30:7187CrossRefGoogle Scholar
  80. 80.
    He G-X, Bruice TC (1991) J Am Chem Soc 113:2747CrossRefGoogle Scholar
  81. 81.
    Bestmann HJ (1980) Pure Appl Chem 52:771CrossRefGoogle Scholar
  82. 82.
    McEwen WE, Beaver BD, Cooney JV (1985) Phosphorus Sulfur 25:255Google Scholar
  83. 83.
    Ward WJ, McEwen WE (1990) J Org Chem 55:493CrossRefGoogle Scholar
  84. 84.
    Schlosser M, Schaub B (1982) J Am Chem Soc 104:5821CrossRefGoogle Scholar
  85. 85.
    Vedejs E, Marth CF (1988) J Am Chem Soc 110:3948CrossRefGoogle Scholar
  86. 86.
    Vedejs E, Snoble KAJ (1973) J Am Chem Soc 95:5778CrossRefGoogle Scholar
  87. 87.
    Maryanoff BE, Reitz AB, Mutter MS, Inners RR, Almond HR Jr (1985) J Am Chem Soc 1068:107Google Scholar
  88. 88.
    Bangerter F, Karpf M, Meier LA, Rys P, Skrabal P (1998) J Am Chem Soc 120:10653CrossRefGoogle Scholar
  89. 89.
    Vedejs E, Snoble KAJ, Fuchs PL (1973) J Org Chem 38:1178CrossRefGoogle Scholar
  90. 90.
    Vedejs E, Fuchs PL (1973) J Am Chem Soc 95:822CrossRefGoogle Scholar
  91. 91.
    Vedejs E, Marth CF (1989) J Am Chem Soc 111:1519CrossRefGoogle Scholar
  92. 92.
    Westheimer FH (1968) Acc Chem Res 1:70CrossRefGoogle Scholar
  93. 93.
    Albright TA, Burdett JK, Whangbo M-H (1985) Orbital Interactions in Chemistry. Wiley, New YorkGoogle Scholar
  94. 94.
    Kay PB, Trippett S (1986) J Chem Res (S) 62Google Scholar
  95. 95.
    Yamataka H, Nagareda K, Takai Y, Sawada M, Hanafusa T (1988) J Org Chem 53:3877CrossRefGoogle Scholar
  96. 96.
    Yamataka H, Nagareda K, Tsutomu T, Ando K, Hanafusa T, Nagase S (1993) J Am Chem Soc 115:8570CrossRefGoogle Scholar
  97. 97.
    Carins SM, McEwen WE (1986) Tetrahedron Lett 27:1541CrossRefGoogle Scholar
  98. 98.
    Donxia L, Dexian W, Yaoshong L, Huaming Z (1986) Tetrahedron 42:4161CrossRefGoogle Scholar
  99. 99.
    Isaacs NS, Abed OH (1986) Tetrahedron Lett 27:995CrossRefGoogle Scholar
  100. 100.
    Yamataka H, Nagareda K, Ando K, Hanafusa T (1992) J Org Chem 57:2865CrossRefGoogle Scholar
  101. 101.
    Appel R, Loos R, Mayr H (2009) J Am Chem Soc 131:704CrossRefGoogle Scholar
  102. 102.
    Frøyen P (1972) Acta Chem Scand 26:2163CrossRefGoogle Scholar
  103. 103.
    Dunne EC, Coyne EJ, Crowley PB, Gilheany DG (2002) Tetrahedron Lett 43:2449CrossRefGoogle Scholar
  104. 104.
    Harrowven DC, Guy IL, Howell M, Packham G (2006) Synlett 2977Google Scholar
  105. 105.
    Harrowven DC, Guy IL, Nanson L (2006) Angew Chem Int Ed 45:2242CrossRefGoogle Scholar
  106. 106.
    McEwen WE, James AB, Knapczyk JW, Killingstad VL, Shiau W-I, Shore S, Smith JH (1978) J Am Chem Soc 100:7304CrossRefGoogle Scholar
  107. 107.
    Keldsen GL, McEwen WE (1978) J Am Chem Soc 100:7312CrossRefGoogle Scholar
  108. 108.
    McEwen WE, Cooney JV (1983) J Org Chem 48:983CrossRefGoogle Scholar
  109. 109.
    Zhang X, Schlosser M (1993) Tetrahedron Lett 1925:34Google Scholar
  110. 110.
    Cushman M, Nagarathnam D, Gopal D, Chakraborti AK, Lin CM, Hamel EJ (1991) J Med Chem 34:2579–2588CrossRefGoogle Scholar
  111. 111.
    Robinson SB, Dunne EC, O’Mahony CP, Garcia-Ruiz V, Gilheany DG in preparation Google Scholar
  112. 112.
    Takenaka N, Sarangthem RS, Captain B (2008) Angew Chem Int Ed 47:9708–9710CrossRefGoogle Scholar
  113. 113.
    Tronchet JMJ, Gentile B (1979) Helv Chim Acta 62:2091CrossRefGoogle Scholar
  114. 114.
    Valverde S, Martin-Lomas M, Herradon B, Garcia Ochoa S (1987) Tetrahedron 43:1987Google Scholar
  115. 115.
    Brimacombe JS, Hanna R, Kabir AKMS, Bennett F, Taylor ID (1986) J Chem Soc Perkin Trans 1 815Google Scholar
  116. 116.
    Brimacombe JS, Kabir AKMS (1986) Carbohydr Res 150:35CrossRefGoogle Scholar
  117. 117.
    Sartillo-Piscil F, Vargas M, Anaya de Parrodi C, Quintero L (2003) Tetrahedron Lett 44:3919Google Scholar
  118. 118.
    Gurjar MK, Khaladkar TP, Borhade RG, Murugan A (2003) Tetrahedron Lett 44:5183CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.School of Chemistry and Chemical BiologyUniversity College DublinDublinIreland

Personalised recommendations