Spin Dynamics in the Time and Frequency Domain

  • Michael Farle
  • Tom Silva
  • Georg Woltersdorf
Part of the Springer Tracts in Modern Physics book series (STMP, volume 246)


The current status of experimental approaches to analyze the spin wave dynamics in ferromagnetic nanoscale structures is reviewed. Recent developments in frequency- and field swept spectroscopy to determine the resonant response of nanoscale ferromagnets are described together with time-resolved measurements in the GHz frequency and pico second time domain, respectively. Examples for the analysis and manipulation of different mechanisms for the relaxation of the magnetization after microwave excitation into its ground state are presented.


Magnetic Anisotropy Spin Current Ferromagnetic Resonance Resonance Field Magnetization Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This chapter is dedicated to the memory of Douglas L. Mills who lost his long battle with leukemia during the writing of this chapter. We thank all former and present co-workers—many of them appearing as co-authors of our publications—who have contributed to the results presented here. This work was supported by the DFG, Sfb 491. G.W. acknowledges financial support from the DFG through SFB 689 and project WO1422/2-1.


  1. 1.
    M. Zomack, K. Baberschke, Submonolayers of paramagnetic \(\text{NO}_2\) adsorbed on Argon and Xenon films. Phys. Rev. B 36, 5756 (1987)Google Scholar
  2. 2.
    A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Oxford University Press, USA, 2012). ISBN 978-0-19-965152-8Google Scholar
  3. 3.
    M. Faehnle, C. Illg, Electron theory of fast and ultrafast dissipative magnetization dynamics. J. Phys. Condens. Matter 23, 493201 (2011)Google Scholar
  4. 4.
    T.G. Phillips, H.M. Rosenberg, Spin waves in ferromagnets. Rep. Progr. Phys. 29, 285 (1966)ADSCrossRefGoogle Scholar
  5. 5.
    A.I. Achiezer, V.G. Barjachtar, M.I. Kaganov, Spinwellen in ferromagnetika und antiferromagnetika. Fortschritte der Physik 10, 471 (1962)ADSCrossRefGoogle Scholar
  6. 6.
    S.-K. Kim, Micromagnetic computer simulations of spin waves in nanometre-scale patterned magnetic elements. J. Phys. D Appl. Phys. 43, 264004 (2010)Google Scholar
  7. 7.
    H. Puszkarski, Theory of surface states in spin wave resonance. Progr. Surf. Sci. 9, 191–247 (1979)Google Scholar
  8. 8.
    B. Hillebrands, in Brillouin Light Scattering from Layered Magnetic Structures. vol. 75, ed. by M. Cardona, G. Gntherodt, Light Scattering in Solids VII, Topics in Applied Physics, (Springer, Berlin 2000), pp. 174–289. 10.1007/BFb0103386Google Scholar
  9. 9.
    Y. Zhang, P.A. Ignatiev, J. Prokop, I. Tudosa, T.R.F. Peixoto, W.X. Tang, Kh Zakeri, V.S. Stepanyuk, J. Kirschner, Elementary excitations at magnetic surfaces and their spin dependence. Phys. Rev. Lett. 106, 127201 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    S. Schwieger, J. Kienert, K. Lenz, J. Lindner, K. Baberschke, W. Nolting, Spin-wave excitations: The main source of the temperature dependence of interlayer exchange coupling in nanostructures. Phys. Rev. Lett. 98, 057205 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    Yi. Li, M. Farle, K. Baberschke, Critical spin fluctuations and Curie temperatures of ultrathin ni(111)/w(110): A magnetic-resonance study in ultrahigh vacuum. Phys. Rev. B 41, 9596 (1990)Google Scholar
  12. 12.
    O. Margeat, M. Tran, M. Spasova, M. Farle, Magnetism and structure of chemically disordered Fé\(\text{Pt}_{3}\) nanocubes. Phys. Rev. B 75, 134410 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    S. Loth, M. Etzkorn, C.P. Lutz, D.M. Eigler, A.J. Heinrich, Measurement of fast electron spin relaxation times with atomic resolution. Science 329, 1628 (2010)Google Scholar
  14. 14.
    K. Ounadjela, B. Hillebrands (ed.), in Spin Dynamics in Confined Magnetic Structures I, II and III. Topics in Applied Physics, (Springer, Berlin, 2002, 2004 and 2006)Google Scholar
  15. 15.
    A. Vansteenkiste, K.W. Chou, M. Weigand, M. Curcic, V. Sackmann, H. Stoll, T. Tyliszczak, G. Woltersdorf, C.H. Back, G. Schütz, B. van Waeyenberge, X-ray imaging of the dynamic magnetic vortex core deformation. Nat. Phys. 5, 332 (2009)CrossRefGoogle Scholar
  16. 16.
    V.E. Demidov, S. Urazhdin, S.O. Demokritov, Direct observation and mapping of spin waves emitted by spin-torque nano-oscillators. Nat. Mater. 9, 984 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    G. Woltersdorf, O. Mosendz, B. Heinrich, C.H. Back, Magnetization Dynamics due to Pure Spin Currents in Magnetic Double Layers. Phys. Rev. Lett. 99, 246603 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    A. Mekonnen, M. Cormier, A.V. Kimel, A. Kirilyuk, A. Hrabec, L. Ranno, T. Rasing, Femtosecond Laser Excitation of Spin Resonances in Amorphous Ferrimagnetic \(Gd_{1-x}\text{Co}_{x}\) Alloys. Phys. Rev. Lett. 107, 117202 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    J. Goulon, A. Rogalev, G. Goujon, F. Wilhelm, J.B. Youssef, C. Gros, J.-M. Barbe, R. Guilard, X-ray detected magnetic resonance: a unique probe of the precession dynamics of orbital magnetization components. Int. J. Mol. Sci. 12, 8797 (2011)Google Scholar
  20. 20.
    S. Pizzini, J. Vogel, M. Bonfim, A. Fontaine, in Time-Resolved x-ray Magnetic Circular Dichroism : A Selective Probe of Magnetization Dynamics on Nanosecond Timescales. vol. 87, ed. by B. Hillebrands, K. Ounadjela, Spin Dynamics in Confined Magnetic Structures II, Topics in Applied Physics, (Springer, Berlin 2003), pp. 157–187Google Scholar
  21. 21.
    H. Wende, Recent advances in x-ray absorption spectroscopy. Rep. Progr. Phys. 67, 2105 (2004)Google Scholar
  22. 22.
    S. Buschhorn, F. Brüssing, R. Abrudan, H. Zabel, Precessional damping of fe magnetic moments in a feni film. J. Phys. D Appl. Phys. 44, 165001 (2011)Google Scholar
  23. 23.
    R. Salikhov, R. Abrudan, F. Brüssing, St. Buschhorn, M. Ewerlin, F. Radu, I.A. Garifullin, H. Zabel, Precessional dynamics and damping in Co/Cu/Py spin valves. Appl. Phys. Lett. 99, 092509 (2011)Google Scholar
  24. 24.
    I. Barsukov, R. Meckenstock, J. Lindner, M. Möller, C. Hassel, O. Posth, M. Farle, H. Wende, Tailoring spin relaxation in thin films by tuning extrinsic relaxation channels. IEEE Trans. Magn. 46, 2252 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    M. Farle, Ferromagnetic resonance of ultrathin metallic layers. Rep. Progr. Phys. 61, 755 (1998)ADSCrossRefGoogle Scholar
  26. 26.
    R. Arias, D.L. Mills, Extrinsic contributions to the ferromagnetic resonance response of ultrathin films. Phys. Rev. B 60, 7395 (1999)Google Scholar
  27. 27.
    I. Barsukov, S. Mankovsky, A. Rubacheva, R. Meckenstock, D. Spoddig, J. Lindner, N. Melnichak, B. Krumme, S.I. Makarov, H. Wende, H. Ebert, M. Farle, Magnetocrystalline anisotropy and gilbert damping in iron-rich \(\text{fe}_{1-x}\text{si}_{x}\) thin films. Phys. Rev. B 84, 180405 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    I. Barsukov, F.M. Römer, R. Meckenstock, K. Lenz, J. Lindner, S. Hemken to Krax, A. Banholzer, M. Körner, J. Grebing, J. Fassbender, M. Farle, Frequency dependence of spin relaxation in periodic systems. Phys. Rev. B 84, 140410 (2011)Google Scholar
  29. 29.
    V. Kamberský, Spin-orbital gilbert damping in common magnetic metals. Phys. Rev. B 76, 134416 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    A.N. Anisimov, M. Farle, P. Poulopoulos, W. Platow, K. Baberschke, P. Isberg, R. Wäppling, A.M.N. Niklasson, O. Eriksson, Orbital magnetism and magnetic anisotropy probed with ferromagnetic resonance. Phys. Rev. Lett. 82, 2390 (1999)ADSCrossRefGoogle Scholar
  31. 31.
    W. Platow, A.N. Anisimov, G.L. Dunifer, M. Farle, K. Baberschke, Correlations between ferromagnetic-resonance linewidths and sample quality in the study of metallic ultrathin films. Phys. Rev. B 58, 5611 (1998)ADSCrossRefGoogle Scholar
  32. 32.
    H. Suhl, Theory of the magnetic damping constant. IEEE Trans. Mag. 34(4, Part 1), 1834–1838 (1998). 7th Joint MMM-Intermag Conference. (San Francisco, California, 1998), Jan. 06–09Google Scholar
  33. 33.
    K. Baberschke, in Investigation of Ultrathin Ferromagnetic Films by Magnetic Resonance. vol. 3, ed. by H. Kronmüller, S.S. Parkin, Handbook of Magnetism and Advanced Magnetic Materials, (Wiley, 2007), p. 1617. ISBN: 978-0-470-02217-7Google Scholar
  34. 34.
    I. Rod, O. Kazakova, D.C. Cox, M. Spasova, M. Farle, The route to single magnetic particle detection: a carbon nanotube decorated with a finite number of nanocubes. Nanotechnology, 20, 19 (2009)Google Scholar
  35. 35.
    J. Lindner, I. Barsukov, C. Raeder, C. Hassel, O. Posth, R. Meckenstock, P. Landeros, D.L. Mills, Two-magnon damping in thin films in case of canted magnetization: theory versus experiment. Phys. Rev. B 80, 224421 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    C.W. Haas, H.B. Callen, Magnetism, vol. I (Academic Press, New York and London, 1963)Google Scholar
  37. 37.
    W. Bailey, P. Kabos, F. Mancoff, S. Russek. Control of magnetization dynamics in \(\text{Ni}_{81}\text{Fe}_{19}\) thin films through the use of rare-earth dopants. IEEE Trans. Mag. 37, 1749 (2001)Google Scholar
  38. 38.
    J.O. Rantschler, R.D. McMichael, A. Castillo, A.J. Shapiro Jr, W.F. Egelhoff, B.B. Maranville, D. Pulugurtha, A.P. Chen, L.M. Connors, Effect of 3d, 4d, and 5d transition metal doping on damping in permalloy thin films. J. Appl. Phys. 101, 033911 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    G. Woltersdorf, M. Kiessling, G. Meyer, J.-U. Thiele, C.H. Back, Damping by slow relaxing rare earth impurities in \(\text{ni}80\text{fe}20\). Phys. Rev. Lett. 102, 257602 (2009)Google Scholar
  40. 40.
    J.-M.L. Beaujour, A.D. Kent, D. Ravelosona, I. Tudosa, E.E. Fullerton, Ferromagnetic resonance study of Co/Pd/Co/Ni multilayers with perpendicular anisotropy irradiated with helium ions. J. Appl. Phys. 109 (2011)Google Scholar
  41. 41.
    C. Bilzer, T. Devolder, C. Chappert, O. Plantevin, A.K. Suszka, B.J. Hickey, A. Lamperti, B.K. Tanner, B. Mahrov, S.O. Demokritov, Ferromagnetic resonance linewidth reduction in feau multilayers using ion beams. J. Appl. Phys. 103, 07B518 (2008)Google Scholar
  42. 42.
    I. Barsukov, P. Landeros, R. Meckenstock, J. Lindner, D. Spoddig, Z.-A. Li, B. Krumme, H. Wende, D. L. Mills, M. Farle, Tuning magnetic relaxation by oblique deposition. Phys. Rev. B 85, 014420 (2012)Google Scholar
  43. 43.
    Y. Tserkovnyak, A. Brataas, G.E.W. Bauer, Spin pumping and magnetization dynamics in metallic multilayers. Phys. Rev. B 66, 224403 (2002)Google Scholar
  44. 44.
    X. Joyeux, T. Devolder, J.-V. Kim, Y. Gomez De La Torre, S. Eimer, C. Chappert, Configuration and temperature dependence of magnetic damping in spin valves. J. Appl. Phys. 110 (2011)Google Scholar
  45. 45.
    J. Lindner, K. Baberschke, Ferromagnetic resonance in coupled ultrathin films. J. Phys. C 15, S465 (2002)Google Scholar
  46. 46.
    Kh. Zakeri, J. Lindner, I. Barsukov, R. Meckenstock, M. Farle, U. von Hörsten, H. Wende, W. Keune, J. Rocker, S.S. Kalarickal, K. Lenz, W. Kuch, K. Baberschke, Z. Frait, Spin dynamics in ferromagnets: Gilbert damping and two-magnon scattering. Phys. Rev. B 76, 104416 (2007)Google Scholar
  47. 47.
    Kh. Zakeri, J. Lindner, I. Barsukov, R. Meckenstock, M. Farle, U. von Hörsten, H. Wende, W. Keune, J. Rocker, S.S. Kalarickal, K. Lenz, W. Kuch, K. Baberschke, Z. Frait, Erratum: Spin dynamics in ferromagnets: Gilbert damping and two-magnon scattering [phys. rev. b 76, 104416 (2007)]. Phys. Rev. B 80, 059901 (2009)Google Scholar
  48. 48.
    M. Yulikov, M. Sterrer, T. Risse, H.-J. Freund, Gold atoms and clusters on MgO(100) films; an epr and iras study. Surf. Sci. 603(10–12), 1622–1628 (2009)Google Scholar
  49. 49.
    M. Farle, M. Zomack, K. Baberschke, ESR of adsorbates on single crystal metal surfaces under UHV conditions. Surf. Sci. 160(1), 205–216 (1985)Google Scholar
  50. 50.
    A. Banholzer, R. Narkowicz, C. Hassel, R. Meckenstock, S. Stienen, O. Posth, D. Suter, M. Farle, J. Lindner, Visualization of spin dynamics in single nanosized magnetic elements. Nanotechnology 22, 295713 (2011)Google Scholar
  51. 51.
    S.S. Kalarickal, P. Krivosik, M. Wu, C.E. Patton, M.L. Patton, M.L. Schneider, P. Kabos, T.J. Silva, J.P. Nibarger, Ferromagnetic resonance linewidth in metallic thin films: comparison of measurement methods. J. Appl. Phys. 99, 093909 (2006)Google Scholar
  52. 52.
    G. Woltersdorf, B. Heinrich, Two-magnon scattering in a self-assembled nanoscale network of misfit dislocations. Phys. Rev. B 69, 188417 (2004)Google Scholar
  53. 53.
    L. Lei, J. Young, W. Mingzhong, C. Mathieu, M. Hadley, P. Krivosik, N. Mo, Tuning of magnetization relaxation in ferromagnetic thin films through seed layers. Appl. Phys. Lett. 100(2), 022403 (2012)Google Scholar
  54. 54.
    P. Wigen, M. Roukes, P. Hammel, in Ferromagnetic Resonance Force Microscopy. vol 101, ed. by B. Hillebrands, A. Thiaville, Spin Dynamics in Confined Magnetic Structures III, Topics in Applied Physics, (Springer, Berlin, 2006), pp. 105–136Google Scholar
  55. 55.
    F. Schreiber, M. Hoffmann, O. Geisau, J. Pelzl, Investigation of the photothermally modulated ferromagnetic resonance signal from magnetostatic modes in yttrium iron garnet films. Appl. Phys. A Mater. Sci. Process. 57, 545 (1993)Google Scholar
  56. 56.
    R. Meckenstock, Invited review article: Microwave spectroscopy based on scanning thermal microscopy: resolution in the nanometer range. Rev. Sci. Instrum. 79, 041101 (2008)Google Scholar
  57. 57.
    H. Mahdjour, W.G. Clark, K. Baberschke, High-sensitivity broad-band microwave spectroscopy with small nonresonant coils. Rev. Sci. Instrum. 57, 1100 (1986)Google Scholar
  58. 58.
    K.D. Bures, K. Baberschke, S.E. Barnes, Electron-Spin-Resonance insitu with a Josephson tunnel jucnction. J. Magnetism Magn. Mater. 54(Part 3), 1415 (1986)Google Scholar
  59. 59.
    P. Landeros, D.L. Mills, Spin waves in periodically perturbed films. Phys. Rev. B 85, 054424 (2012)ADSCrossRefGoogle Scholar
  60. 60.
    F.M. Romer, M. Moller, K. Wagner, L. Gathmann, R. Narkowicz, H. Zahres, B.R. Salles, P. Torelli, R. Meckenstock, J. Lindner, M. Farle, In situ multifrequency ferromagnetic resonance and x-ray magnetic circular dichroism investigations on Fe/GaAs(110): Enhanced g-factor. Appl. Phys. Lett. 100, 092402 (2012)ADSCrossRefGoogle Scholar
  61. 61.
    S.S. Kalarickal, M. Nan, P. Krivosik, C.E. Patton, Ferromagnetic resonance linewidth mechanisms in polycrystalline ferrites: Role of grain-to-grain and grain-boundary two-magnon scattering processes. Phys. Rev. B 79, 094427 (2009)Google Scholar
  62. 62.
    A.A. Tulapurkar, Y. Suzuki, A. Fukushima, H. Kubota, H. Maehara, K. Tsunekawa, D.D. Djayaprawira, N. Watanabe, S. Yuasa, Spin-torque diode effect in magnetic tunnel junctions. Nature 438(7066), 339–342 (2005)ADSCrossRefGoogle Scholar
  63. 63.
    J.C. Sankey, P.M. Braganca, A.G.F. Garcia, I.N. Krivorotov, R.A. Buhrman, D.C. Ralph, Spin-transfer-driven ferromagnetic resonance of individual nanomagnets. Phys Rev Lett 96, 227601 (2006)ADSCrossRefGoogle Scholar
  64. 64.
    J.N. Kupferschmidt, S. Adam, P.W. Brouwer, Theory of the spin-torque-driven ferromagnetic resonance in a ferromagnet/normal-metal/ferromagnet structure. Phys. Rev. B 74(13), 134416 (2006)Google Scholar
  65. 65.
    A. Alexey, Gerrit E. W. Bauer, A. Brataas, Current-driven ferromagnetic resonance, mechanical torques, and rotary motion in magnetic nanostructures. Phys. Rev. B 75, 014430 (2007)Google Scholar
  66. 66.
    G.D. Fuchs, J.C. Sankey, V.S. Pribiag, L. Qian, P.M. Braganca, A.G.F. Garcia, E.M. Ryan, Z.-P. Li, O. Ozatay, D.C. Ralph, R.A. Buhrman, Spin-torque ferromagnetic resonance measurements of damping in nanomagnets. Appl. Phys. Lett. 91, 062507 (2007)Google Scholar
  67. 67.
    W. Chen, J.-M.L. Beaujour, G. de Loubens, A.D. Kent, J.Z. Sun, Spin-torque driven ferromagnetic resonance of co/ni synthetic layers in spin valves. Appl. Phys. Lett. 92, 012507 (2008)ADSCrossRefGoogle Scholar
  68. 68.
    W. Chen, G. de Loubens, J.-M. L. Beaujour, A.D. Kent, J.Z. Sun, Finite size effects on spin-torque driven ferromagnetic resonance in spin valves with a Co/Ni synthetic free layer. J. Appl. Phys. 103(7), 07A502 (2008)Google Scholar
  69. 69.
    J.C. Sankey, Y.-T. Cui, J.Z. Sun, J.C. Slonczewski, R.A. Buhrman, D.C. Ralph, Measurement of the spin-transfer-torque vector in magnetic tunnel junctions. Nat. Phys. 4, 67–71 (2008)Google Scholar
  70. 70.
    W. Chen, G. de Loubens, J.-M.L. Beaujour, J.Z. Sun, A.D. Kent, Spin-torque driven ferromagnetic resonance in a nonlinear regime. Appl. Phys. Lett. 95, 172513 (2009)ADSCrossRefGoogle Scholar
  71. 71.
    W.H. Rippard, A.M. Deac, M.R. Pufall, J.M. Shaw, M.W. Keller, S.E. Russek, G.E.W. Bauer, C. Serpico, Spin-transfer dynamics in spin valves with out-of-plane magnetized CoNi free layers. Phys. Rev. B 81, 014426 (2010)Google Scholar
  72. 72.
    C. Wang, Y.-T. Cui, J.A. Katine, R.A. Buhrman, D.C. Ralph, Time-resolved measurement of spin-transfer-driven ferromagnetic resonance and spin torque in magnetic tunnel junctions. Nat. Phys. 7, 496 (2011)Google Scholar
  73. 73.
    R.D. McMichael, M.D. Stiles, Magnetic normal modes of nanoelements. J. Appl. Phys. 97, 10J901 (2005)Google Scholar
  74. 74.
    J.M. Shaw, T.J. Silva, M.L. Schneider, R.D. McMichael, Spin dynamics and mode structure in nanomagnet arrays: effects of size and thickness on linewidth and damping. Phys. Rev. B 79, 184404 (2009)Google Scholar
  75. 75.
    H.T. Nembach, J.M. Shaw, T.J. Silva, W.L. Johnson, S.A. Kim, R.D. McMichael, P. Kabos, Effects of shape distortions and imperfections on mode frequencies and collective linewidths in nanomagnets. Phys. Rev. B 83, 094427 (2011)Google Scholar
  76. 76.
    P.W. Anderson, H. Suhl, Instability in the motion of ferromagnets at high microwave power levels. Phys. Rev. 100, 1788 (1955)ADSCrossRefGoogle Scholar
  77. 77.
    Y.K. Fetisov, C.E. Patton, V.T. Synogach, Nonlinear ferromagnetic resonance and foldover in yttrium iron garnet thin films-inadequacy of the classical model. IEEE Trans. Magn. 35, 4511–4521 (1999)Google Scholar
  78. 78.
    M.T. Weiss, Microwave and low-frequency oscillation due to resonance instabilities in ferrites. Phys. Rev. Lett. 1, 239–241 (1958)ADSCrossRefGoogle Scholar
  79. 79.
    W.H. Rippard, M.R. Pufall, S. Kaka, S.E. Russek, T.J. Silva, Direct-current induced dynamics in \(\text{Co}_{90}\text{Fe}_{10}/\text{Ni}_{80}\text{Fe}_{20}\) point contacts. Phys. Rev. Lett. 92, 027201 (2004)ADSCrossRefGoogle Scholar
  80. 80.
    W.K. Hiebert, L. Lagae, J. De Boeck, Spatially resolved ultrafast precessional magnetization reversal. Phys. Rev. B 68, 020402(R) (2003)Google Scholar
  81. 81.
    M. Buess, R. Hoellinger, T. Haug, K. Perzlmaier, U. Krey, D. Pescia, M.R. Scheinfein, D. Weiss, C.H. Back, Fourier transform imaging of spin vortex eigenmodes. Phys. Rev. Lett. 93, 077207 (2004)ADSCrossRefGoogle Scholar
  82. 82.
    F. Hoffmann, G. Woltersdorf, K. Perzlmaier, A.N. Slavin, V.S. Tiberkevich, A. Bischof, D. Weiss, C.H. Back, Mode degeneracy due to vortex core removal in magnetic disks. Phys. Rev. B 76, 014416 (2007)ADSCrossRefGoogle Scholar
  83. 83.
    K.Y. Guslienko, A.N. Slavin, V. Tiberkevich, S.-K. Kim, Dynamic origin of azimuthal modes splitting in vortex-state magnetic dots. Phys. Rev. Lett. 101, 247203 (2008)ADSCrossRefGoogle Scholar
  84. 84.
    M. Covington, T.M. Crawford, G.J. Parker, Time-resolved measurement of propagating spin waves in ferromagnetic thin films. Phys. Rev. Lett. 89, 237202 (2002)ADSCrossRefGoogle Scholar
  85. 85.
    K. Perzlmaier, G. Woltersdorf, C.H. Back, Observation of the propagation and interference of spin waves in ferromagnetic thin films. Phys. Rev. B 77, 054425 (2008)ADSCrossRefGoogle Scholar
  86. 86.
    I. Neudecker, G. Woltersdorf, B. Heinrich, T. Okuno, G. Gubbiotti, C.H. Back, Comparison of frequency, field, and time domain ferromagnetic resonance methods. J. Mag. Mag. Mat. 307, 148–156 (2006)ADSCrossRefGoogle Scholar
  87. 87.
    I. Neudecker, K. Perzlmaier, F. Hoffmann, G. Woltersdorf, M. Buess, D. Weiss, C.H. Back, Modal spectrum of permalloy disks excited by in-plane magnetic fields. Phys. Rev. B 73, 134426 (2006)ADSCrossRefGoogle Scholar
  88. 88.
    L. Berger, Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353 (1996)ADSCrossRefGoogle Scholar
  89. 89.
    J.C. Slonczewski, Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, 1 (1996)ADSCrossRefGoogle Scholar
  90. 90.
    S.I. Kiselev, J.C. Sankey, I.N. Krivorotov, N.C. Emley, R.J. Schoelkopf, R.A. Buhrman, D.C. Ralph, Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425, 380 (2003)ADSCrossRefGoogle Scholar
  91. 91.
    I.N. Krivorotov, N.C. Emley, J.C. Sankey, S.I. Kiselev, D.C. Ralph, R.A. Buhrman, Time-domain measurements of nanomagnet dynamics driven by spin-transfer torques. Science 307, 228 (2005)ADSCrossRefGoogle Scholar
  92. 92.
    T. Kimura, Y. Otani, J. Hamrle, Switching magnetization of a nanoscale ferromagnetic particle using nonlocal spin injection. Phys. Rev. Lett. 96, 037201 (2006)ADSCrossRefGoogle Scholar
  93. 93.
    Y. Tserkovnyak, A. Brataas, G.E.W. Bauer, Enhanced gilbert daming in thin ferromagnetic films. Phys. Rev. Lett. 88, 117601 (2002)ADSCrossRefGoogle Scholar
  94. 94.
    R. Urban, G. Woltersdorf, B. Heinrich, Gilbert damping in single and multilayer ultrathin films: Role of interfaces in nonlocal spin dynamics. Phys. Rev. Lett. 87, 217204 (2001)ADSCrossRefGoogle Scholar
  95. 95.
    B. Heinrich, Y. Tserkovnyak, G. Woltersdorf, A. Brataas, R. Urban, G.E. Bauer, Dynamic exchange coupling in magnetic bilayers. Phys. Rev. Lett. 90, 187601 (2003)ADSCrossRefGoogle Scholar
  96. 96.
    M.D. Stiles, A. Zangwill, Anatomy of spin-transfer torque. Phys. Rev. B 66(1), 014407 (2002)ADSCrossRefGoogle Scholar
  97. 97.
    O. Mosendz, G. Woltersdorf, B. Kardasz, B. Heinrich, C.H. Back, Magnetization dynamics in the presence of pure spin currents in magnetic single and double layers in spin ballistic and diffusive regimes. Phys. Rev. B 79, 224412 (2009)ADSCrossRefGoogle Scholar
  98. 98.
    K. Khazen, H.J. von Bardeleben, J.L. Cantin, L. Thevenard, L. Largeau, O. Mauguin, A. Lemaître, Ferromagnetic resonance of \(\text{Ga}_{0.93}\text{Mn}_{0.07}\)As thin films with constant Mn and variable free-hole concentrations. Phys. Rev. B 77, 165204 (2008)Google Scholar
  99. 99.
    C. Bihler, M. Althammer, A. Brandlmaier, S. Geprägs, M. Weiler, M. Opel, W. Schoch, W. Limmer, R. Gross, M.S. Brandt, S.T.B. Goennenwein, \(\text{Ga}_{1-x} \text{Mn}_{x}\)As /piezoelectric actuator hybrids: A model system for magnetoelastic magnetization manipulation. Phys. Rev. B 78, 045203 (2008)ADSCrossRefGoogle Scholar
  100. 100.
    D. Chiba, M. Sawicki, Y. Nishitani, Y. Nakatani, F. Matsukura, H. Ohno, Magnetization vector manipulation by electric fields. Nature 455, 515 (2008)ADSCrossRefGoogle Scholar
  101. 101.
    F. Hoffmann, G. Woltersdorf, W. Wegscheider, A. Einwanger, D. Weiss, C.H. Back, Mapping the magnetic anisotropy in (Ga, Mn)As nanostructures. Phys. Rev. B 80, 054417 (2009)ADSCrossRefGoogle Scholar
  102. 102.
    J. Wenisch, C. Gould, L. Ebel, J. Storz, K. Pappert, M.J. Schmidt, C. Kumpf, G. Schmidt, K. Brunner, L.W. Molenkamp, Control of magnetic anisotropy in (Ga, Mn)As by lithography-induced strain relaxation. Phys. Rev. Lett. 99, 077201 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Fakultät für Physik and Center for NanoIntegration Duisburg-Essen (CENIDE)Universität Duisburg-EssenDuisburgGermany
  2. 2.National Institute of Standards and TechnologyColoradoUSA
  3. 3.Department of Physics/ Magnetism GroupUniversität Regensburg, Universitätsstraße 31RegensburgGermany

Personalised recommendations