Skip to main content

The Influence of Magnetic Anisotropy on Current-Induced Spindynamics

  • Chapter
  • First Online:
Magnetic Nanostructures

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 246))

Abstract

The chapter provides a short and intuitive introduction to the basic concept of spin-transfer torque and the field of spin-torque driven magnetization dynamics in nanopillar systems. The influence of spin-polarized currents on magnetic nano-objects may lead to current-induced magnetization reversal as well as current-driven magnetization dynamics. The quantities that determine the critical currents for magnetization switching and the influence of the relative orientation of magnetization and current polarization are discussed. We focus on the nanopillar geometry and address the influence of magnetic anisotropy on the spin-torque driven spindynamics. Selected experimental examples are given to illustrate the interplay between magnetic anisotropy and spin-transfer torque.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Berger, J. Appl. Phys. 50, 2137 (1979)

    Article  ADS  Google Scholar 

  2. P.P. Freitas, L. Berger, J. Appl. Phys. 57, 1266 (1985)

    Article  ADS  Google Scholar 

  3. J.C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996)

    Article  ADS  Google Scholar 

  4. L. Berger, Phys. Rev. B 54, 9353 (1996)

    Article  ADS  Google Scholar 

  5. J.A. Katine, F.J. Albert, R.A. Buhrman, E.B. Myers, D.C. Ralph, Phys. Rev. Lett. 84, 3149 (2000)

    Article  ADS  Google Scholar 

  6. M.D. Stiles, J. Miltat, in Spin Dynamics in Confined Magnetic Structures III, ed. by B. Hillebrands, A. Thiaville. Topics in Applied Physics, vol 101 (Springer, Berlin, 2006), p. 225

    Google Scholar 

  7. D.C. Ralph, M.D. Stiles, Series of review articles. J. Magn. Magn. Mater. 320, 1190 (2008)

    Google Scholar 

  8. J.A. Katine, E.E. Fullerton, ibid, p. 1217

    Google Scholar 

  9. J.Z. Sun, D.C. Ralph, ibid, p. 1227

    Google Scholar 

  10. D.V. Berkov, J. Miltat, ibid, p. 1238

    Google Scholar 

  11. T.J. Silva, W.H. Rippard, ibid, p. 1260

    Google Scholar 

  12. G.S.D. Beach, M. Tsoi, J.L. Erskine, ibid, p. 1272

    Google Scholar 

  13. Y. Tserkovnyak, A. Brataas, G.E.W. Bauer, ibid, p. 1282

    Google Scholar 

  14. H. Ohno, T. Dietl, ibid, p. 1293

    Google Scholar 

  15. P.M. Haney, R.A. Duine, A.S.Núñez, A.H. MacDonald, ibid, p. 1300

    Google Scholar 

  16. C.H. Marrows, Adv. Phys. 54, 585 (2005)

    Article  ADS  Google Scholar 

  17. J.A. Katine, E.E. Fullerton, J. Magn. Magn. Mater. 320, 1217 (2008)

    Article  Google Scholar 

  18. D.C. Ralph, M.D. Stiles, J. Magn. Magn. Mater. 320, 1190 (2008)

    Article  Google Scholar 

  19. K. Inomata, IEICE Trans. Electron. E84C, 740 (2001)

    Google Scholar 

  20. D. Chiba, Y. Sato, T. Kita, F. Matsukura, H. Ohno, Phys. Rev. Lett. 93, 216602 (2004)

    Article  ADS  Google Scholar 

  21. P.M. Braganca, I.N. Krivorotov, O. Ozatay, A.G.F. Garcia, N.C. Emley, J.C. Sankey, D.C. Ralph, R.A. Buhrman, Appl. Phys. Lett. 87, 112507 (2005)

    Article  ADS  Google Scholar 

  22. O. Ozatay, P.G. Gowtham, K.W. Tan, J.C. Read, K.A. Mkhoyan, M.G. Thomas, G.D. Fuchs, P.M. Braganca, E.M. Ryan, K.V. Thadani, J. Silcox, D.C. Ralph, R.A. Buhrman, Nat. Mater. 7, 567 (2008)

    Article  ADS  Google Scholar 

  23. J. Lindner, Superlattices Microstruct. 47, 497 (2010)

    Article  ADS  Google Scholar 

  24. I. Yulaev, M. Lubarda, S. Mangin, V. Lomakin, E.E. Fullerton Appl, Phys. Lett. 99, 132502 (2011)

    Google Scholar 

  25. M. AlHajDarwish, H. Kurt, S. Urazhdin, A. Fert, R. Loloee, W.P. Pratt Jr, J. Bass, Phys. Rev. Lett. 93, 157203 (2004)

    Article  ADS  Google Scholar 

  26. H. Dassow, R. Lehndorff, D.E. Bürgler, M. Buchmeier, P.A. Grünberg, C.M. Schneider, A. van der Hart, Appl. Phys. Lett. 89, 222511 (2006)

    Article  ADS  Google Scholar 

  27. T. Valet, A. Fert, Phys. Rev. B 48, 7099 (1993)

    Article  ADS  Google Scholar 

  28. R. Meservey, P.M. Tedrow, Phys. Rep. 238, 174 (1994)

    Article  ADS  Google Scholar 

  29. T. Taniguchi, S. Yakata, H. Imamura, Y. Ando, Appl. Phys. Express 1, 031302 (2008)

    Article  ADS  Google Scholar 

  30. T. Kimura, J. Hamrle, Y. Otani, Phys. Rev. B 72, 014461 (2005)

    Article  ADS  Google Scholar 

  31. M. Gmitra, J. Barnaś. Phys. Rev. Lett. 96, 207205 (2006)

    Google Scholar 

  32. M.D. Stiles, A. Zangwill, Phys. Rev. B 66, 014407 (2002)

    Article  ADS  Google Scholar 

  33. W.H. Butler, X.-G. Zhang, T.C. Schulthess, J.M. MacLaren, Phys. Rev. B 63, 054416 (2001)

    Article  ADS  Google Scholar 

  34. J. Mathon, A. Umerski, Phys. Rev. B 63, 220403 (2001)

    Article  ADS  Google Scholar 

  35. J.C. Slonczewski, Phys. Rev. B 39, 6995 (1989)

    Article  ADS  Google Scholar 

  36. T. Yang, T. Kimura, Y. Otani, Nat. Phys. 4, 851 (2008)

    Article  Google Scholar 

  37. S. Zhang, P.M. Levy, A. Fert, Phys. Rev. Lett. 88, 236601 (2002)

    Article  ADS  Google Scholar 

  38. M.D. Stiles, W.M. Saslow, M.J. Donahue, A. Zangwill, Phys. Rev. B 75, 214423 (2007)

    Article  ADS  Google Scholar 

  39. R. Lehndorff, D.E. Bürgler, A. Kakay, R. Hertel, C.M. Schneider, IEEE Trans. Mag. 44, 1951 (2008)

    Article  ADS  Google Scholar 

  40. E. Martinez, L. Torres, L. Lopez-Diaz, M. Carpentieri, G. Finocchio, J. Appl. Phys. 97, 10E302 (2005)

    Google Scholar 

  41. M. Tsoi, A.G.M. Jansen, J. Bass, W-C. Chiang, M. Seck, V. Tsoi, P. Wyder, Phys. Rev. Lett. 80, (1998)

    Google Scholar 

  42. S.I. Kiselev, J.C. Sankey, I.N. Krivorotov, N.E. Emley, R.J. Schoelkopf, R.A. Buhrman, D.C. Ralph, Nature 425, 380 (2003)

    Article  ADS  Google Scholar 

  43. W.H. Rippard, M.R. Pufall, S. Kaka, S.E. Russek, T.J. Silva, Phys. Rev. Lett. 92, 027201 (2004)

    Article  ADS  Google Scholar 

  44. S. Mangin, D. Ravelosona, J.A. Katine, M.J. Carey, B.D. Terris, E.E. Fullerton, Nat. Mater. 5, 210 (2006)

    Article  ADS  Google Scholar 

  45. S. Bonetti, P. Muduli, F. Mancoff, J. Åkerman, Appl. Phys. Lett. 94, 102507 (2009)

    Article  ADS  Google Scholar 

  46. Haiwen Xi, Kai-Zhong Gao, Yiming Shi, Appl. Phys. Lett. 84, 4977 (2004)

    Article  ADS  Google Scholar 

  47. A. Slavin, V. Tiberkevich, IEEE Trans. Magn. 45, 1875 (2009)

    Article  ADS  Google Scholar 

  48. J. Xiao, A. Zangwill, M.D. Stiles, Phys. Rev. B 70, 172405 (2004)

    Article  ADS  Google Scholar 

  49. J.C. Slonczewski, J. Magn. Magn. Mater. 247, 324 (2002)

    Article  ADS  Google Scholar 

  50. L. Berger, J. Appl. Phys. 89, 5521 (2001)

    Article  ADS  Google Scholar 

  51. M.D. Stiles, J. Xiao, A. Zangwill, Phys. Rev B 69, 54408 (2004)

    Article  ADS  Google Scholar 

  52. O. Boulle, V. Cros, J. Grollier, L.G. Pereira, C. Deranlot, F. Petroff, G. Faini, J. Barnas, A. Fert, Nat. Phys. 3, 492 (2007)

    Article  Google Scholar 

  53. T. Devolder, A. Meftah, K. Ito, J.A. Katine, P. Crozat, C. Chappert, J. Appl. Phys. 101, 063916 (2007)

    Article  ADS  Google Scholar 

  54. Y. Jiang, T. Nizake, S. Abe, T. Ochiai, A. Hirohata, N. Tezuka, K. Inomata, Nat. Mater. 3, 361 (2004)

    Article  ADS  Google Scholar 

  55. Y. Jiang, S. Abe, T. Ochiai, T. Nozaki, A. Hirohata, N. Tezuka, K. Inomata, Phys. Rev. Lett. 92, 167204 (2004)

    Article  ADS  Google Scholar 

  56. Hoang Yen Thi Nguyen, Hyunjung Yi, Sung-Jung Joo, Kyung-Ho Shin, Kyung-Jin Lee, Bernard Dieny, Appl. Phys. Lett. 89, 094103 (2006)

    Article  ADS  Google Scholar 

  57. R. Lehndorff, D.E. Bürgler, A. Kakay, R. Hertel, C.M. Schneider, Phys. Rev. B 76, 214420 (2007)

    Article  ADS  Google Scholar 

  58. R. Lehndorff, D.E. Bürgler, A. Kakay, R. Hertel, C.M. Schneider, IEEE Trans. Magn. 44, 1951 (2008)

    Article  ADS  Google Scholar 

  59. M.D. Stiles, D.R. Penn, Phys. Rev. B 61, 3200 (2000)

    Article  ADS  Google Scholar 

  60. T. Seki, S. Mitani, K. Yakushiji, K. Takanashi, Appl. Phys. Lett. 88, 172504 (2006)

    Article  ADS  Google Scholar 

  61. H. Meng, J.P. Wang Appl, Phys. Lett. 88, 172506 (2006)

    Google Scholar 

  62. A. Kent, B. Ozyilmaz, E. del Barco, Appl. Phys. Lett. 84, 3897 (2004)

    Article  ADS  Google Scholar 

  63. A.D. Kent, Nat. Mater. 6, 399 (2007)

    Article  ADS  Google Scholar 

  64. K.J. Lee, O. Redon, B. Dieny, Appl. Phys. Lett. 86, 022505 (2005)

    Article  ADS  Google Scholar 

  65. D. Houssameddine, U. Ebels, B. Delaët, B. Rodmacq, I. Firastrau, F. Ponthenier, M. Brunet, C. Thirion, J.-P. Michel, L. Prejbeanu-Buda, M.-C. Cyrille, O. Redon, B. Dieny, Nat. Mater. 6, 447 (2007)

    Article  ADS  Google Scholar 

  66. Y. Zhou, J. Åkerman, Appl. Phys. Lett. 94, 112503 (2009)

    Article  ADS  Google Scholar 

  67. S. Mangin, Y. Henry, D. Ravelosona, J.A. Katine, E.E. Fullerton, Appl. Phys. Lett. 94, 012502 (2009)

    Article  ADS  Google Scholar 

  68. H. Yoda, T. Kishi, T. Nagase, M. Yoshikawa, K. Nishiyama, E. Kitagawa, T. Daibou, M. Amano, N. Shimomura., S. Takahashi, T. Kai, M. Nakayama, H. Aikawa, S. Ikegawa, M. Nagamine, J. Ozeki, S. Mizukami, M. Oogane, Y. Ando, S. Yuasa, K. Yakushiji, H. Kubota, Y. Suzuki, Y. Nakatani, T. Miyazaki, K. Ando. Curr. Appl. Phys. 10, e87 (2010)

    Google Scholar 

  69. Y.B. Bazaliy, B.A. Jones, S.C. Zhang, J. Appl. Phys. 89, 6793 (2001)

    Article  ADS  Google Scholar 

  70. Y.B. Bazaliy, B.A. Jones, S.C. Zhang, Phys. Rev. B 69, 094421 (2004)

    Article  ADS  Google Scholar 

  71. K. Aoshima, N. Funabashi, K. Machida, Y. Miyamoto, N. Kawamura, K. Kuga, N. Shimidzu, T. Kimura, Y. Otani, F. Sato, IEEE Trans. Magn. 44, 2491 (2008)

    Article  ADS  Google Scholar 

  72. J.H. Park, M.T. Moneck, C. Park, J.G. Zhu, J. Appl. Phys. 105, 07D129 (2009)

    Google Scholar 

  73. Y.S. Yuasa, T. Nagahama, A. Fukushima, H. Kubota, T. Katayama, K. Ando, Appl. Phys. Express 1, 041302 (2008)

    Article  ADS  Google Scholar 

  74. X. Jiang, L. Gao, J.Z. Sun, S.S.P. Parkin, Phys. Rev. Lett. 97, 217202 (2006)

    Google Scholar 

  75. H. Sukegawa, S. Kasai, T. Furubayashi, S. Mitani, K. Inomata, Appl. Phys. Lett. 96, 042508 (2010)

    Article  ADS  Google Scholar 

  76. N. Reckers, J. Cucchiara, O. Posth, C. Hassel, F.M. Römer, R. Narkowicz, R.A. Gallardo, P. Landeros, H. Zähres, S. Mangin, J.A. Katine, E.E. Fullerton, G. Dumpich, R. Meckenstock, J. Lindner, M. Farle, Phys. Rev. B 83, 184427 (2011)

    Article  ADS  Google Scholar 

  77. W. Lin, J. Cucchiara, C. Berthelot, T. Hauet, Y. Henry, J.A. Katine, E.E. Fullerton, S. Mangin, Appl. Phys. Lett 96, 252503 (2010)

    Article  ADS  Google Scholar 

  78. S.I. Kiselev, J.C. Sankey, I.N. Krivorotov, N.C. Emley, R.J. Schoelkopf, R.A. Buhrman, D.C. Ralph, Nature 425, 380 (2003)

    Article  ADS  Google Scholar 

  79. J. Grollier, V. Cros, A. Hamzi, J.M. Georges, G. Faini, J. Ben Youssef, H. Le Gall, A. Fert, Phys. Rev. B 67, 174402 (2003)

    Article  ADS  Google Scholar 

  80. H. Morise, S. Nakamura, Phys. Rev. B 71, 014439 (2005)

    Article  ADS  Google Scholar 

  81. J. Xiao, A. Zangwill, M.D. Stiles, Phys. Rev. B 72, 014446 (2005)

    Article  ADS  Google Scholar 

  82. J. Cucchiara, E.E. Fullerton, A.D. Kent, J.Z. Sun, Y. Henry, S. Mangin, Phys. Rev. B 84, 100405 (2011)

    Google Scholar 

  83. Y. Henry, S. Mangin, J. Cucchiara, J.A. Katine, E.E Fullerton, Phys. Rev. B 79, 214422 (2009)

    Google Scholar 

  84. D. Ravelosona, S. Mangin, Y. Lemaho, J. Katine, B. Terris, E.E. Fullerton, Phys. Rev. Lett. 96, 186604 (2006)

    Article  ADS  Google Scholar 

  85. D. Ravelosona, S. Mangin, J.A. Katine, E.E. Fullerton, B.D. Terris, Appl. Phys. Lett. 90, 072508 (2007)

    Article  ADS  Google Scholar 

  86. C. Burrowes, D. Ravelosona, C. Chappert, S. Mangin, E.E. Fullerton, J.A. Katine, B.D. Terris, Appl. Phys. Lett 93, 172513 (2008)

    Article  ADS  Google Scholar 

  87. D. Bedau, H. Liu, J-J. Bouzaglou, A.D. Kent J.Z. Sun, J.A. Katine, E.E Fullerton, S. Mangin, Appl. Phys. Lett 96, 022514 (2010)

    Google Scholar 

  88. D. Bedau, H. Liu, J.Z. Sun, J.A. Katine, E.E. Fullerton, S. Mangin, A.D. Kent, Appl. Phys. Lett 97, 262502 (2010)

    Article  ADS  Google Scholar 

  89. J.Z. Sun, Phys. Rev. B 62, 570 (2000)

    Article  ADS  Google Scholar 

  90. Z. Li, S. Zhang, Phys. Rev. B 69, 134416 (2004)

    Article  ADS  Google Scholar 

  91. M. Apalkov, P.B. Visscher, Phys. Rev. B 72, 180405 (2005)

    Article  ADS  Google Scholar 

  92. D.P. Bernstein, B. Bräuer, R. Kukreja, J. Stöhr, T. Hauet, J. Cucchiara, S. Mangin, J.A. Katine, T. Tyliszczak, K.W. Chou, Y. Acremann, Phys. Rev. B 83, 180410 (2011)

    Google Scholar 

  93. J. Cucchiara, Y. Henry, D. Ravelosona, D. Lacour, E.E. Fullerton, J.A. Katine, S. Mangin, Appl. Phys. Lett 94, 102503 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank all our former and present coworkers who have contributed to the results presented here. This work was supported by the DFG, SFB 491, in parts by the Friends contract of the French National Research Agency (ANR) and by the NSF Award #1008654.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Lindner .

Editor information

Editors and Affiliations

Appendix

Appendix

In the following we show that Eq. (13) and Eq. (16) are indeed eqvivalent. We start from Eq. (13),

$$\begin{aligned} \frac{{\text{d}} {\mathbf M}}{{\text{d}t}} = - \left| \gamma \right| {\mathbf M} \times {\mathbf B}_{{\text{eff}}} + \frac{\alpha }{M} {\mathbf M} \times \frac{{\text{d}} {\mathbf M}}{{\text{d} t}} - \left| \gamma \right| \frac{a_J}{M} {\mathbf M} \times \left( {\mathbf M} \times {\mathbf m}_p \right). \end{aligned}$$
(28)

Inserting \(\text{d} {\mathbf M} / \text{d} t\) on the right hand side yields:

$$\begin{aligned} \frac{{\text{d}} {\mathbf M}}{{\text{d}t}}&= - \left| \gamma \right| {\mathbf M} \times {\mathbf B}_{{\text{eff}}} - \left| \gamma \right| \frac{a_J}{M} {\mathbf M} \times \left( {\mathbf M} \times {\mathbf m}_p \right)+ \frac{\alpha }{M} {\mathbf M} \nonumber \\&{}\times \left[ - \left| \gamma \right| {\mathbf M} \times {\mathbf B}_{{\text{eff}}} + \frac{\alpha }{M} {\mathbf M} \times \frac{{\text{d} {\mathbf M}}}{{\text{d} t}} - \left| \gamma \right| \frac{a_J}{M} {\mathbf M} \times \left( {\mathbf M} \times {\mathbf m}_p \right) \right]. \end{aligned}$$
(29)

Using the relation \({\mathbf a} \times ({\mathbf b} \times {\mathbf c}) = {\mathbf b} ({\mathbf a} \cdot {\mathbf c}) - {\mathbf c} ({\mathbf a} \cdot {\mathbf b})\) and considering that \({\mathbf M} \perp \dot{{\mathbf M}}\) one easily derives

$$\begin{aligned} {\mathbf M} \times \left( {\mathbf M} \times \frac{{\text{d}} {\mathbf M}}{{\text{d} t}} \right)&= {\mathbf M} \left( {\mathbf M} \cdot \frac{{\text{d}} {\mathbf M}}{{\text{d} t}} \right) - \frac{{\text{d}} {\mathbf M}}{{\text{d} t}} \cdot {\mathbf M}^2 = - \frac{{\text{d}} {\mathbf M}}{{\text{d} t}} \cdot M^2 \nonumber \\ {\mathbf M} \times \left( {\mathbf M} \times {\mathbf m}_p \right)&= {\mathbf M} \left( {\mathbf M} \cdot {\mathbf m}_p \right) - {\mathbf m}_p \cdot M^2 \nonumber \\ {\mathbf M} \times \left[ {\mathbf M} \times \left( {\mathbf M} \times {\mathbf m}_p \right) \right]&= - {\mathbf M} \times {\mathbf m}_p \cdot M^2 . \end{aligned}$$
(30)

This in turn yields:

$$\begin{aligned} \frac{{\text{d}} {\mathbf M}}{{\text{d}t}} =&-\left| \gamma \right| {\mathbf M} \times {\mathbf B}_{{\text{eff}}} - \left| \gamma \right| \frac{\alpha }{M} {\mathbf M} \times \left( {\mathbf M} \times {\mathbf B}_{{\text{eff}}} \right) - \alpha ^2 \frac{{\text{d}} {\mathbf M}}{{\text{d}t}} \nonumber \\&+ \left| \gamma \right| \alpha a_J {\mathbf M} \times {\mathbf m}_p - \left| \gamma \right| \frac{a_J}{M} {\mathbf M} \times \left( {\mathbf M} \times {\mathbf m}_p \right). \end{aligned}$$
(31)

Reorganizing the terms finally leads to

$$\begin{aligned} \frac{1}{\left| \gamma \right|} \frac{{\text{d}} {\mathbf M}}{{\text{d}t}} = - A \cdot {\mathbf M} \times \left( {\mathbf B}_{{\text{eff}}} - \alpha a_J {\mathbf m}_p \right) - A \cdot \frac{{\mathbf M}}{M} \times \left[ {\mathbf M} \times \left( \alpha {\mathbf B}_{{\text{eff}}} + a_J {\mathbf m}_p \right) \right],\nonumber \\ \end{aligned}$$
(32)

which is Eq. (16).

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lindner, J., Bürgler, D.E., Mangin, S. (2013). The Influence of Magnetic Anisotropy on Current-Induced Spindynamics. In: Zabel, H., Farle, M. (eds) Magnetic Nanostructures. Springer Tracts in Modern Physics, vol 246. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32042-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32042-2_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32041-5

  • Online ISBN: 978-3-642-32042-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics