Controlling Extraction in Abstract Categorial Grammars

  • Sylvain Pogodalla
  • Florent Pompigne
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7395)


This paper proposes an approach to control extraction in the framework of Abstract Categorial Grammar (ACG). As examples, we consider embedded wh-extraction, multiple wh-extraction and tensed-clauses as scope islands. The approach relies on an extended type system for ACG that introduces dependent types and advocates for a treatment at a rather abstract (tectogrammatical) level. Then we discuss approaches that put control at the object (phenogrammatical) level, using appropriate calculi.


Free Variable Relative Clause Computational Linguistics Categorial Grammar Scope Ambiguity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carpenter, B.: Type-Logical Semantics. The MIT Press (1997)Google Scholar
  2. 2.
    Curry, H.B.: Some logical aspects of grammatical structure. In: Jakobson, R. (ed.) Structure of Language and its Mathematical Aspects: Proceedings of the Twelfth Symposium in Applied Mathematics, pp. 56–68. American Mathematical Society (1961)Google Scholar
  3. 3.
    de Groote, P.: Towards Abstract Categorial Grammars. In: 39th Annual Meeting and 10th Conference of the European Chapter, Proceedings of the Conference on Association for Computational Linguistics, pp. 148–155 (2001)Google Scholar
  4. 4.
    de Groote, P., Maarek, S.: Type-theoretic extensions of Abstract Categorial Grammars. In: Proceedings of New Directions in Type-Theoretic Grammars, pp. 18–30 (2007),
  5. 5.
    de Groote, P., Pogodalla, S.: On the expressive power of abstract categorial grammars: Representing context-free formalisms. Journal of Logic, Language and Information 13(4), 421–438 (2004), MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    de Groote, P., Pogodalla, S., Pollard, C.: On the Syntax-Semantics Interface: From Convergent Grammar to Abstract Categorial Grammar. In: Ono, H., Kanazawa, M., de Queiroz, R. (eds.) WoLLIC 2009. LNCS, vol. 5514, pp. 182–196. Springer, Heidelberg (2009), CrossRefGoogle Scholar
  7. 7.
    de Groote, P., Maarek, S., Yoshinaka, R.: On Two Extensions of Abstract Categorial Grammars. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp. 273–287. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Johnson, M.: Proof nets and the complexity of processing center embedded constructions. Journal of Logic, Language and Information 7(4) (1998)Google Scholar
  9. 9.
    Joshi, A.K., Schabes, Y.: Tree-adjoining grammars. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, ch. 2. Springer (1997)Google Scholar
  10. 10.
    Kanazawa, M.: Parsing and generation as datalog queries. In: Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics (ACL), pp. 176–183. Association for Computational Linguistics, Prague (2007), Google Scholar
  11. 11.
    Kanazawa, M., Pogodalla, S.: Advances in Abstract Categorial Grammars: Language theory and linguistic modelling. In: ESSLLI 2009, Bordeaux, France. Lecture Notes (2009),
  12. 12.
    Kubota, Y., Pollard, C.: Phonological Interpretation into Preordered Algebrasa. In: Ebert, C., Jäger, G., Michaelis, J. (eds.) MOL 10. LNCS, vol. 6149, pp. 200–209. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Lambek, J.: The mathematics of sentence structure. American Mathematical Monthly 65(3), 154–170 (1958)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Lambek, J.: On the calculus of syntactic types. In: Jacobsen, R. (ed.) Structure of Language and its Mathematical Aspects. Proceedings of Symposia in Applied Mathematics, vol. XII. American Mathematical Society (1961)Google Scholar
  15. 15.
    Montague, R.: The proper treatment of quantification in ordinary english. In: Formal Philosophy: Selected Papers of Richard Montague. Yale University Press (1974); re-edited in Formal Semantics: The Essential Readings, Portner, P., Partee, B.H., (eds.) Blackwell Publishers (2002) Google Scholar
  16. 16.
    Moortgat, M.: Categorial type logics. In: van Benthem, J., ter Meulen, A. (eds.) Handbook of Logic and Language, pp. 93–177. Elsevier Science Publishers, Amsterdam (1996)Google Scholar
  17. 17.
    Moot, R., Piazza, M.: Linguistic applications of first order intuitionistic linear logic. Journal of Logic, Language and Information 10, 211–232 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Morrill, G.: Categorial formalisation of relativisation: Islands, extraction sites and pied piping. Tech. Rep. LSI-92-23-R, Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya (1992)Google Scholar
  19. 19.
    Morrill, G.V.: Incremental processing and acceptability. Computational Linguistics 26(3), 319–338 (2000)CrossRefGoogle Scholar
  20. 20.
    Muskens, R.: Lambda Grammars and the Syntax-Semantics Interface. In: van Rooy, R., Stokhof, M. (eds.) Proceedings of the Thirteenth Amsterdam Colloquium, Amsterdam, pp. 150–155 (2001)Google Scholar
  21. 21.
    Muskens, R.: Lambdas, Language, and Logic. In: Kruijff, G.J., Oehrle, R. (eds.) Resource Sensitivity in Binding and Anaphora. Studies in Linguistics and Philosophy, pp. 23–54. Kluwer (2003)Google Scholar
  22. 22.
    Muskens, R.: Separating syntax and combinatorics in categorial grammar. Research on Language and Computation 5(3), 267–285 (2007)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Pogodalla, S.: Computing semantic representation: Towards ACG abstract terms as derivation trees. In: Proceedings of the Seventh International Workshop on Tree Adjoining Grammar and Related Formalisms (TAG+7), pp. 64–71 (May 2004),
  24. 24.
    Pogodalla, S.: Generalizing a proof-theoretic account of scope ambiguity. In: Geertzen, J., Thijsse, E., Bunt, H., Schiffrin, A. (eds.) Proceedings of the 7th International Workshop on Computational Semantics - IWCS 2007, pp. 154–165. Tilburg University, Deparment of Communication and Information Sciences (2007), Google Scholar
  25. 25.
    Ranta, A.: Type Theoretical Grammar. Oxford University Press (1994)Google Scholar
  26. 26.
    Retoré, C., Salvati, S.: A faithful representation of non-associative lambek grammars in abstract categorial grammars. Journal of Logic, Language and Information 19(2), 185–200 (2010), MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Salvati, S.: Problèmes de filtrage et problèmes d’analyse pour les grammaires catégorielles abstraites. Ph.D. thesis. Institut National Polytechnique de Lorraine (2005)Google Scholar
  28. 28.
    Salvati, S.: Minimalist Grammars in the Light of Logic. In: Pogodalla, S., Quatrini, M., Retoré, C. (eds.) Logic and Grammar. LNCS, vol. 6700, pp. 81–117. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  29. 29.
    Shan, C.C.: Delimited continuations in natural language: Quantification and polarity sensitivity. In: Thielecke, H. (ed.) Proceedings of the 4th continuations workshop, pp. 55–64. School of Computer Science, University of Birmingham (2004)Google Scholar
  30. 30.
    Shieber, S.M.: Unifying synchronous tree-adjoining grammars and tree transducers via bimorphisms. In: Proceedings of the 11th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2006), Trento, Italy, April 3-7 (2006),
  31. 31.
    Stabler, E.: Derivational minimalism. In: Retoré, C. (ed.) LACL 1996. LNCS (LNAI), vol. 1328, pp. 68–95. Springer, Heidelberg (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sylvain Pogodalla
    • 1
  • Florent Pompigne
    • 2
  1. 1.LORIA/INRIA Nancy – Grand EstFrance
  2. 2.LORIA/Nancy UniversitéFrance

Personalised recommendations