Collusion-Preserving Computation

  • Joël Alwen
  • Jonathan Katz
  • Ueli Maurer
  • Vassilis Zikas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7417)

Abstract

In collusion-free protocols, subliminal communication is impossible and parties are thus unable to communicate any information “beyond what the protocol allows.” Collusion-free protocols are interesting for several reasons, but have specifically attracted attention because they can be used to reduce trust in game-theoretic mechanisms. Collusion-free protocols are impossible to achieve (in general) when all parties are connected by point-to-point channels, but exist under certain physical assumptions (Lepinksi et al., STOC 2005) or when parties are connected in specific network topologies (Alwen et al., Crypto 2008).

We provide a “clean-slate” definition of the stronger notion of collusion preservation. Our goals in revisiting the definition are:
  • To give a definition with respect to arbitrary communication resources (including as special cases the communication models from prior work). We can then, in particular, better understand what types of resources enable collusion-preserving protocols.

  • To construct protocols that allow no additional subliminal communication when parties can communicate via other means. (This property is not implied by collusion-freeness.)

  • To support composition, so protocols can be designed in a modular fashion using sub-protocols run among subsets of the parties.

In addition to proposing the definition, we explore implications of our model and show a general feasibility result for collusion-preserving computation of arbitrary functionalities. We formalize a model for concurrently playing multiple extensive-form, mediated games while preserving many important equilibrium notions.

Keywords

Full Version Ideal Functionality Star Network Security Notion Corrupted Party 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abraham, I., Dolev, D., Gonen, R., Halpern, J.: Distributed computing meets game theory: robust mechanisms for rational secret sharing and multiparty computation. In: 25th ACM PODC, pp. 53–62. ACM Press (2006)Google Scholar
  2. 2.
    Abraham, I., Dolev, D., Halpern, J.Y.: Lower Bounds on Implementing Robust and Resilient Mediators. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 302–319. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Alwen, J., Katz, J., Lindell, Y., Persiano, G., Shelat, A., Visconti, I.: Collusion-Free Multiparty Computation in the Mediated Model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 524–540. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Alwen, J., Katz, J., Maurer, U., Zikas, V.: Collusion preserving computation. Cryptology ePrint Archive, Report 2011/443 (2011), http://eprint.iacr.org/2011/433
  5. 5.
    Alwen, J., Shelat, A., Visconti, I.: Collusion-Free Protocols in the Mediated Model. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 497–514. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Aumann, R.: Subjectivity and Correlation in Randomized Strategies. Journal of Math. Econ. 1, 67–96 (1974)Google Scholar
  7. 7.
    Aumann, R.J.: Acceptable points in general cooperative n-person games. In: Topics in Mathematical Economics and Game Theory Essays in Honor of Robert J Aumann, vol. 23, pp. 287–324 (1959)Google Scholar
  8. 8.
    Barany, I.: Fair distribution protocols, or how the players replace fortune. Mathematics of Operations Research 17, 327–340 (1992)Google Scholar
  9. 9.
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: 42nd FOCS, pp. 136–145. IEEE (2001), Full version at http://eprint.iacr.org/2000/067/
  10. 10.
    Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally Composable Security with Global Setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–85. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure computation. In: STOC, pp. 494–503 (2002)Google Scholar
  12. 12.
    Canetti, R., Vald, M.: Universally composable security with local adversaries. Cryptology ePrint Archive, Report 2012/117 (2012), http://eprint.iacr.org/2012/117
  13. 13.
    Crawford, V., Sobel, J.: Strategic information transmission. Econometrica 50, 1431–1451 (1982)Google Scholar
  14. 14.
    Dodis, Y., Katz, J., Smith, A., Walfish, S.: Composability and On-Line Deniability of Authentication. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 146–162. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Forges, F.: Universal mechanisms. Econometrica 58, 1342–1364 (1990)Google Scholar
  16. 16.
    Goldreich, O.: Foundations of Cryptography. Basic Applications, vol. 2. Cambridge University Press, Cambridge (2004)Google Scholar
  17. 17.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game, or a completeness theorem for protocols with honest majority. In: 19th ACM STOC, pp. 218–229. ACM Press (1987)Google Scholar
  18. 18.
    Izmalkov, S., Lepinski, M., Micali, S.: Rational Secure Computation and Ideal Mechanism Design. In: FOCS 2005: Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science, pp. 585–595. IEEE Computer Society, Washington, DC (2005)Google Scholar
  19. 19.
    Izmalkov, S., Lepinski, M., Micali, S.: Verifiably Secure Devices. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 273–301. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Izmalkov, S., Lepinski, M., Micali, S.: Perfect implementation. Games and Economic Behavior 71(1), 121–140 (2011), http://hdl.handle.net/1721.1/50634
  21. 21.
    Izmalkov, S., Micali, S., Lepinski, M.: Rational secure computation and ideal mechanism design. In: 46th FOCS, pp. 585–595. IEEE (2005), Full version available at http://dspace.mit.edu/handle/1721.1/38208
  22. 22.
    Lepinksi, M., Micali, S., Shelat, A.: Collusion-Free Protocols. In: STOC 2005: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing, pp. 543–552. ACM, New York (2005)Google Scholar
  23. 23.
    Lepinski, M., Micali, S., Peikert, C., Shelat, A.: Completely fair SFE and coalitionsafe cheap talk. In: 23rd ACM PODC, pp. 1–10. ACM Press (2004)Google Scholar
  24. 24.
    Lepinski, M., Micali, S., Shelat, A.: Collusion-free protocols. In: 37th ACM STOC, pp. 543–552. ACM Press (2005)Google Scholar
  25. 25.
    Lepinski, M., Micali, S., Shelat, A.: Fair-Zero Knowledge. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 245–263. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  26. 26.
    Maurer, U., Renner, R.: Abstract cryptography. In: Innovations in Computer Science. Tsinghua University Press (2011)Google Scholar
  27. 27.
    Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic Game Theory. Cambridge University Press, New York (2007)Google Scholar
  28. 28.
    Simmons, G.J.: The prisoners’ problem and the subliminal channel. In: Crypto 1983, pp. 51–67. Plenum Press (1984)Google Scholar
  29. 29.
    Simmons, G.J.: Cryptanalysis and protocol failures. Communications of the ACM 37(11), 56–65 (1994)Google Scholar
  30. 30.
    Simmons, G.J.: The History of Subliminal Channels. In: Anderson, R. (ed.) IH 1996. LNCS, vol. 1174, pp. 237–256. Springer, Heidelberg (1996)Google Scholar

Copyright information

© International Association for Cryptologic Research 2012 2012

Authors and Affiliations

  • Joël Alwen
    • 1
  • Jonathan Katz
    • 2
  • Ueli Maurer
    • 1
  • Vassilis Zikas
    • 2
  1. 1.ETH ZürichZürichSwitzerland
  2. 2.University of MarylandCollege ParkUSA

Personalised recommendations