Advertisement

Actively Secure Two-Party Evaluation of Any Quantum Operation

  • Frédéric DupuisEmail author
  • Jesper Buus Nielsen
  • Louis Salvail
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7417)

Abstract

We provide the first two-party protocol allowing Alice and Bob to evaluate privately even against active adversaries any completely positive, trace-preserving map \(\mathscr {F} \in \mathrm {L}(\mathcal {A}_{{{\mathrm{in}}}} \otimes \mathcal {B}_{{{\mathrm{in}}}}) \rightarrow \) \(\mathrm {L}(\mathcal {A}_{{{\mathrm{out}}}} \otimes \mathcal {B}_{{{\mathrm{out}}}})\), given as a quantum circuit, upon their joint quantum input state \(\rho _{\mathrm {in}}\in \mathrm{D}({\mathcal {A}_{{{\mathrm{in}}}} \otimes \mathcal {B}_{{{\mathrm{in}}}}})\). Our protocol leaks no more to any active adversary than an ideal functionality for \(\mathscr {F}\) provided Alice and Bob have the cryptographic resources for active secure two-party classical computation. Our protocol is constructed from the protocol for the same task secure against specious adversaries presented in [4].

Keywords

Quantum Circuit Authentication Code Ideal Functionality Quantum Operation Active Security 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aharonov, D., Ben-Or, M., Eban, E.: Interactive proofs for quantum computations. In: Proceedings of Innovations in Computer Science (2008), http://arxiv.org/abs/0810.5375
  2. 2.
    Barnum, H., Crépeau, C., Gottesman, D., Smith, A., Tapp, A.: Authentication of quantum messages. In: 43rd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 449–458 (2002)Google Scholar
  3. 3.
    Bravyi, S., Kitaev, A.: Universal quantum computation with ideal clifford gates and noisy ancillas. Physical Review A 71, 022316 (2005), quant-ph/0403025MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dupuis, F., Nielsen, J.B., Salvail, L.: Secure Two-Party Quantum Evaluation of Unitaries against Specious Adversaries. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 685–706. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Dupuis, F., Nielsen, J.B., Salvail, L.: Actively secure two-party evaluation of any quantum operation. Cryptology ePrint Archive, record 2012/304 (2012), http://eprint.iacr.org/
  6. 6.
    Gottesman, D.: Stabilizer codes and quantum error correction. PhD thesis, California Institute of Technology (1997)Google Scholar
  7. 7.
    Gottesman, D.: An introduction to quantum error correction and fault-tolerant quantum computation. In: Lomonaco Jr., S.J. (ed.) Quantum Information Science and Its Contributions to Mathematics. Proceedings of Symposia in Applied Mathematics, vol. 68, pp. 13–60 (April 2010), http://arxiv.org/abs/0904.2557
  8. 8.
    Gottesman, D., Chuang, I.L.: Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999)CrossRefGoogle Scholar
  9. 9.
    Gottesman, D., Chuang, I.L.: Quantum teleportation is a universal computational primitive (August 1999), http://arxiv.org/abs/quant-ph/9908010
  10. 10.
    Gutoski, G., Watrous, J.: Toward a general theory of quantum games. In: 39th Annual ACM Symposium on Theory of Computing (STOC), pp. 565–574 (2007)Google Scholar
  11. 11.
    Hallgren, S., Smith, A., Song, F.: Classical Cryptographic Protocols in a Quantum World. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 411–428. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Lunemann, C., Nielsen, J.B.: Fully Simulatable Quantum-Secure Coin-Flipping and Applications. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp. 21–40. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: 37th Annual ACM Symposium on Theory of Computing (STOC), pp. 84–93 (2005)Google Scholar
  14. 14.
    Shor, P.W.: Fault-tolerant quantum computation. In: 37th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 56–65 (1996)Google Scholar

Copyright information

© International Association for Cryptologic Research 2012 2012

Authors and Affiliations

  • Frédéric Dupuis
    • 1
    Email author
  • Jesper Buus Nielsen
    • 2
  • Louis Salvail
    • 3
  1. 1.Institute for Theoretical PhysicsETH ZurichZürichSwitzerland
  2. 2.Department of Computer ScienceAarhus UniversityAarhus CDenmark
  3. 3.Université de (DIRO)MontrealCanada

Personalised recommendations